000 | 03183cam a22005538i 4500 | ||
---|---|---|---|
001 | on1158507353 | ||
003 | OCoLC | ||
005 | 20220711203627.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 200602s2021 nju ob 001 0 eng | ||
010 | _a 2020024707 | ||
040 |
_aDLC _beng _erda _cDLC _dOCLCO _dOCLCF _dDG1 _dOCLCO |
||
020 |
_a9781119699057 _q(electronic bk. : oBook) |
||
020 |
_a1119699053 _q(electronic bk. : oBook) |
||
020 |
_a9781119699026 _q(epub) |
||
020 |
_a1119699029 _q(epub) |
||
020 |
_a9781119698999 _q(adobe pdf) |
||
020 |
_a1119698995 _q(adobe pdf) |
||
020 |
_z9781119699033 _q(cloth) |
||
029 | 1 |
_aAU@ _b000067267634 |
|
035 | _a(OCoLC)1158507353 | ||
042 | _apcc | ||
050 | 0 | 0 | _aQ325.6 |
082 | 0 | 0 |
_a006.3/1 _223 |
049 | _aMAIN | ||
100 | 1 |
_aSadhu, Arup Kumar, _eauthor. _99426 |
|
245 | 1 | 0 |
_aMulti-agent coordination : _ba reinforcement learning approach / _cArup Kumar Sadhu, Amit Konar. |
263 | _a2008 | ||
264 | 1 |
_aHoboken, New Jersey : _bWiley-IEEE, _c[2021] |
|
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bn _2rdamedia |
||
338 |
_aonline resource _bnc _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
520 |
_a"This book explores the usage of Reinforcement Learning for Multi-Agent Coordination. Chapter 1 introduces fundamentals of the multi-robot coordination. Chapter 2 offers two useful properties, which have been developed to speed-up the convergence of traditional multi-agent Q-learning (MAQL) algorithms in view of the team-goal exploration, where team-goal exploration refers to simultaneous exploration of individual goals. Chapter 3 proposes the novel consensus Q-learning (CoQL), which addresses the equilibrium selection problem. Chapter 4 introduces a new dimension in the literature of the traditional correlated Q-learning (CQL), in which correlated equilibrium (CE) is computed partly in the learning and the rest in the planning phases, thereby requiring CE computation once only. Chapter 5 proposes an alternative solution to the multi-agent planning problem using meta-heuristic optimization algorithms. Chapter 6 provides the concluding remarks based on the principles and experimental results acquired in the previous chapters. Possible future directions of research are also examined briefly at the end of the chapter."-- _cProvided by publisher. |
||
588 | _aDescription based on print version record and CIP data provided by publisher; resource not viewed. | ||
590 | _bWiley Frontlist Obook All English 2020 | ||
650 | 0 |
_aReinforcement learning. _99427 |
|
650 | 0 |
_aMultiagent systems. _94974 |
|
650 | 7 |
_aMultiagent systems _2fast _0(OCoLC)fst01749717 _94974 |
|
650 | 7 |
_aReinforcement learning _2fast _0(OCoLC)fst01732553 _99427 |
|
655 | 4 |
_aElectronic books. _93294 |
|
700 | 1 |
_aKonar, Amit, _eauthor. _99428 |
|
776 | 0 | 8 |
_iPrint version: _aSadhu, Arup Kumar. _tMulti-agent coordination _dHoboken, New Jersey : Wiley-IEEE, [2021] _z9781119699033 _w(DLC) 2020024706 |
856 | 4 | 0 |
_uhttps://doi.org/10.1002/9781119699057 _zWiley Online Library |
942 | _cEBK | ||
994 |
_a92 _bDG1 |
||
999 |
_c69394 _d69394 |