000 03183cam a22005538i 4500
001 on1158507353
003 OCoLC
005 20220711203627.0
006 m o d
007 cr |||||||||||
008 200602s2021 nju ob 001 0 eng
010 _a 2020024707
040 _aDLC
_beng
_erda
_cDLC
_dOCLCO
_dOCLCF
_dDG1
_dOCLCO
020 _a9781119699057
_q(electronic bk. : oBook)
020 _a1119699053
_q(electronic bk. : oBook)
020 _a9781119699026
_q(epub)
020 _a1119699029
_q(epub)
020 _a9781119698999
_q(adobe pdf)
020 _a1119698995
_q(adobe pdf)
020 _z9781119699033
_q(cloth)
029 1 _aAU@
_b000067267634
035 _a(OCoLC)1158507353
042 _apcc
050 0 0 _aQ325.6
082 0 0 _a006.3/1
_223
049 _aMAIN
100 1 _aSadhu, Arup Kumar,
_eauthor.
_99426
245 1 0 _aMulti-agent coordination :
_ba reinforcement learning approach /
_cArup Kumar Sadhu, Amit Konar.
263 _a2008
264 1 _aHoboken, New Jersey :
_bWiley-IEEE,
_c[2021]
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
504 _aIncludes bibliographical references and index.
520 _a"This book explores the usage of Reinforcement Learning for Multi-Agent Coordination. Chapter 1 introduces fundamentals of the multi-robot coordination. Chapter 2 offers two useful properties, which have been developed to speed-up the convergence of traditional multi-agent Q-learning (MAQL) algorithms in view of the team-goal exploration, where team-goal exploration refers to simultaneous exploration of individual goals. Chapter 3 proposes the novel consensus Q-learning (CoQL), which addresses the equilibrium selection problem. Chapter 4 introduces a new dimension in the literature of the traditional correlated Q-learning (CQL), in which correlated equilibrium (CE) is computed partly in the learning and the rest in the planning phases, thereby requiring CE computation once only. Chapter 5 proposes an alternative solution to the multi-agent planning problem using meta-heuristic optimization algorithms. Chapter 6 provides the concluding remarks based on the principles and experimental results acquired in the previous chapters. Possible future directions of research are also examined briefly at the end of the chapter."--
_cProvided by publisher.
588 _aDescription based on print version record and CIP data provided by publisher; resource not viewed.
590 _bWiley Frontlist Obook All English 2020
650 0 _aReinforcement learning.
_99427
650 0 _aMultiagent systems.
_94974
650 7 _aMultiagent systems
_2fast
_0(OCoLC)fst01749717
_94974
650 7 _aReinforcement learning
_2fast
_0(OCoLC)fst01732553
_99427
655 4 _aElectronic books.
_93294
700 1 _aKonar, Amit,
_eauthor.
_99428
776 0 8 _iPrint version:
_aSadhu, Arup Kumar.
_tMulti-agent coordination
_dHoboken, New Jersey : Wiley-IEEE, [2021]
_z9781119699033
_w(DLC) 2020024706
856 4 0 _uhttps://doi.org/10.1002/9781119699057
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c69394
_d69394