000 | 10260cam a22006138i 4500 | ||
---|---|---|---|
001 | on1178869054 | ||
003 | OCoLC | ||
005 | 20220711203646.0 | ||
006 | m d u | ||
007 | cr ||||||||||| | ||
008 | 200617s2021 nju ob 001 0 eng | ||
010 | _a 2020027864 | ||
040 |
_aDLC _beng _erda _cDLC _dOCLCO _dOCLCF _dDG1 _dUKAHL _dUKMGB |
||
015 |
_aGBC0H6900 _2bnb |
||
016 | 7 |
_a020007701 _2Uk |
|
020 |
_a9781119109402 _q(electronic bk. : oBook) |
||
020 |
_a111910940X _q(electronic bk. : oBook) |
||
020 |
_a9781119109396 _q(epub) |
||
020 |
_a1119109396 _q(epub) |
||
020 |
_a9781119109389 _q(adobe pdf) |
||
020 |
_a1119109388 _q(adobe pdf) |
||
020 |
_z9781119109372 _q(cloth) |
||
029 | 1 |
_aUKMGB _b020007701 |
|
029 | 1 |
_aAU@ _b000067575292 |
|
035 | _a(OCoLC)1178869054 | ||
037 |
_a9781119109396 _bWiley |
||
042 | _apcc | ||
050 | 0 | 0 | _aTK7870 |
082 | 0 | 0 |
_a621.381 _223 |
049 | _aMAIN | ||
100 | 1 |
_aTulkoff, Cheryl, _eauthor. _99707 |
|
245 | 1 | 0 |
_aDesign for excellence in electronics manufacturing / _cCheryl Tulkoff, National Instruments, US , Greg Caswell, DfR Solutions, US . |
263 | _a2103 | ||
264 | 1 |
_aHoboken, NJ : _bWiley, _c2021. |
|
300 | _a1 online resource. | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bn _2rdamedia |
||
338 |
_aonline resource _bnc _2rdacarrier |
||
490 | 1 | _aQuality and reliability engineering series | |
504 | _aIncludes bibliographical references and index. | ||
520 |
_a"Design for Excellence in Electronics Manufacturing offers comprehensive, up to date coverage specific to design and reliability of electronics. The book will highlight how utilizing the DfX concepts of Design for Reliability, Design for Manufacturability, Design for Environment, Design for Testability, etc., will not only reduce research and development costs, but will also decrease time to market and allow companies to confidently issue warranty coverage. Ultimately, Design for Excellence will increase customer satisfaction, market share, and long term profits. The Design for Excellence material is critical for engineers and management who wish to learn best practices regarding product design. Practices need to be adjusted for different manufacturing processes, suppliers, use environments, and reliability expectations, and this book will demonstrate how to do just that"-- _cProvided by publisher. |
||
588 | _aDescription based on print version record and CIP data provided by publisher; resource not viewed. | ||
505 | 0 | _a<P>Contributors xxiii</p> <p>Foreword xxv</p> <p>Preface xxvii</p> <p>Acknowledgments xxix</p> <p>Acronyms xxxi</p> <p>Introduction iii</p> <p>1 Introduction to Design for Excellence</p> <p>1.1 Design for Excellence (DfX) in Electronics Manufacturing 1</p> <p>1.2 Chapter 2 -- Establishing a Reliability Program 3</p> <p>1.3 Chapter 3 -- Design for Reliability (DfR) 3</p> <p>1.4 Chapter 4 -- Design for the Use Environment: Reliability Testing</p> <p>and Test Plan Development 4</p> <p>1.5 Chapter 5 -- Design for Manufacturability 5</p> <p>1.6 Chapter 6 -- Design for Life Cycle Management 6</p> <p>1.7 Chapter 7 -- Root Cause Problem-Solving, Failure Analysis, and Continual Improvement Techniques 1.8 Chapter 8 -- Summary and Bringing It All Together 8</p> <p>2 Establishing a Reliability Program</p> <p>2.1 Introduction 9</p> <p>2.2 Best Practices and the Economics of a Reliability Program 12</p> <p>2.2.1 Best in Class Reliability Program Practices 13</p> <p>2.3 Elements of a Reliability Program 16</p> <p>2.3.1 Reliability Goals 17</p> <p>2.3.2 Defined Use Environments 18</p> <p>2.3.3 Software Reliability 21</p> <p>2.3.4 General Software Requirements 22</p> <p>2.4 Review of Commonly Used Probability and Statistics Concepts in Reliability</p> <p>2.4.1 Sources of Reliability Data 32</p> <p>2.4.2 Reliability Probability in Electronics 35</p> <p>2.4.3 Variation Statistics 35</p> <p>2.4.4 Reliability Statistics in Electronics 36</p> <p>2.5 Reliability Analysis and Prediction Methods 39</p> <p>2.6 Summary 45</p> <p>Bibliography 45</p> <p>3 Design for Reliability</p> <p>3.1 Introduction 47</p> <p>3.1.1 DfR at the Concept Stage 54</p> <p>3.2 Specifications (Product and Environment Definitions and Con</p> <p>cerns) 57</p> <p>3.3 Reliability Physics Analysis 61</p> <p>3.3.1 Reliability Physics Alternatives 68</p> <p>3.3.2 Reliability Physics Models and Examples 71</p> <p>3.3.3 Component Selection 77</p> <p>3.3.4 Critical Components 79</p> <p>3.3.5 Moisture Sensitivity Level 81</p> <p>3.3.6 Temperature Sensitivity Level 81</p> <p>3.3.7 Electrostatic Discharge 81</p> <p>3.3.8 Lifetime 83</p> <p>3.4 Surviving the Heat Wave 85</p> <p>3.5 Redundancy 89</p> <p>3.6 Plating Materials -- Tin Whiskers 91</p> <p>3.7 Derating and Uprating 94</p> <p>3.8 Reliability of New Packaging Technologies 96</p> <p>3.9 Printed Circuit Boards 98</p> <p>3.9.1 Surface Finishes 99</p> <p>3.9.2 Laminate Selection 107</p> <p>3.9.3 Cracking and Delamination 108</p> <p>3.9.4 Plated Through Holes- Vias 109</p> <p>3.9.5 Conductive Anodic Filament 112</p> <p>3.9.6 Strain and Flexure Issues 116</p> <p>3.9.7 Pad Cratering 119</p> <p>3.9.8 PCB Buckling 120</p> <p>3.9.9 Electrochemical Migration 121</p> <p>3.9.10 Cleanliness 134</p> <p>3.10 Non-Functional Pads 138</p> <p>3.11 Wearout Mechanisms 139</p> <p>3.12 Conformal Coating and Potting 143</p> <p>Bibliography 150</p> <p>4 Design for the Use Environment: Reliability Testing and Test</p> <p>Plan Development</p> <p>4.1 Introduction 155</p> <p>4.1.1 Elements of a Testing Program 157</p> <p>4.1.2 Know The Environment 162</p> <p>4.2 Standards and Measurements 164</p> <p>4.3 Failure Inducing Stressors 165</p> <p>4.4 Common Test Types 166</p> <p>4.4.1 Temperature Cycling 166</p> <p>4.4.2 Temperature-Humidity-Bias Testing 168</p> <p>4.4.3 Electrical Connection 169</p> <p>4.4.4 Corrosion Tests 169</p> <p>4.4.5 Power Cycling 170</p> <p>4.4.6 Electrical Loads 170</p> <p>4.4.7 Mechanical Bending 171</p> <p>4.4.8 Random and Sinusoidal Vibration 172</p> <p>4.4.9 Mechanical Shock 176</p> <p>4.4.10 ALT Testing 178</p> <p>4.4.11 HALT Testing 178</p> <p>4.4.12 EMC Testing Dos and Don'ts 181</p> <p>4.5 Test Plan Development 182</p> <p>4.5.1 The Process 184</p> <p>4.5.2 Failure Analysis 186</p> <p>4.5.3 Screening Tests 186</p> <p>4.5.4 Case Study 1 189</p> <p>4.5.5 Case Study 2 192</p> <p>4.5.6 Case Study 3 195</p> <p>Bibliography 198</p> <p>5 Design for Manufacturability (DfM)</p> <p>5.1 Introduction 201</p> <p>5.2 Overview of Industry Standard Organizations 207</p> <p>5.3 Overview of DfM Processes 212</p> <p>5.4 Component Topics 215</p> <p>5.5 Printed Circuit Board Topics 234</p> <p>5.5.1 Laminate Selection 234</p> <p>5.5.2 Surface Finish 235</p> <p>5.5.3 Discussion of Different Surface Finishes 236</p> <p>5.5.4 Stack-up 240</p> <p>5.5.5 Plated Through Holes 242</p> <p>5.5.6 Conductive Anodic Filament (CAF) Formation 243</p> <p>5.5.7 Copper Weight 244</p> <p>5.5.8 Pad Geometries 245</p> <p>5.5.9 Trace and Space Separation 247</p> <p>5.5.10 Non-Functional Pads 248</p> <p>5.5.11 Shipping and Handling 248</p> <p>5.5.12 Cleanliness and Contamination 249</p> <p>5.6 Process Materials 253</p> <p>5.6.1 Solder 253</p> <p>5.6.2 Solder Paste 254</p> <p>5.6.3 Flux 255</p> <p>5.6.4 Stencils 258</p> <p>5.6.5 Conformal Coating 259</p> <p>5.6.6 Potting 264</p> <p>5.6.7 Underfill 266</p> <p>5.6.8 Cleaning Materials 267</p> <p>5.6.9 Adhesives 267</p> <p>5.7 Summary: Implementing DfM 268</p> <p>Bibliography 269</p> <p>6 Design for Life Cycle Management</p> <p>6.1 Introduction 271</p> <p>6.2 Obsolescence Management 272</p> <p>6.2.1 Obsolescence Resolution Techniques 273</p> <p>6.2.2 Industry Standards 276</p> <p>6.2.3 Asset Security 278</p> <p>6.3 Long-Term Storage 280</p> <p>6.4 Long-Term Reliability Issues 283</p> <p>6.5 Counterfeit Prevention and Detection Strategies 288</p> <p>6.6 Supplier Selection 306</p> <p>6.6.1 Selecting a Printed Circuit Board Fabricator 309</p> <p>6.6.2 Auditing a Printed Circuit Board Fabricator 318</p> <p>6.6.3 Selecting a Contract Manufacturer 332</p> <p>6.6.4 Auditing a Contract Manufacturer 336</p> <p>6.6.5 Summary 342</p> <p>7 Root Cause Problem-solving, Failure Analysis and Continual Improvement Techniques</p> <p>7.1 Introduction 345</p> <p>7.1.1 Continual Improvement 347</p> <p>7.1.2 Problem-Solving 348</p> <p>7.1.3 Identification of Problems and Improvement Opportunities 348</p> <p>7.1.4 Overview of Industry Standard Organizations 352</p> <p>7.2 Root Cause Failure Analysis Methodology 357</p> <p>7.3 Failure Reporting, Analysis and Corrective Action System (FRACAS)</p> <p>7.4 Failure Analysis (FA) 373</p> <p>7.4.1 Failure Analysis Techniques 376</p> <p>7.4.2 Failure Verification 399</p> <p>7.4.3 Corrective Action 400</p> <p>7.4.4 Failure Report Closure 401</p> <p>7.5 Continuing Education and Improvement Activities 402</p> <p>7.6 Summary: Implementing Root Cause Methodology 403</p> <p>Bibliography 404</p> <p>8 Conclusion to Design for Excellence: Bringing It All Together</p> <p>8.1 Design for Excellence (DfX) in Electronics Manufacturing 407</p> <p>8.2 Chapter 2 -- Establishing a Reliability Program 408</p> <p>8.3 Chapter 3 -- Design for Reliability (DfR) 409</p> <p>8.4 Chapter 4 -- Design for the Use Environment: Reliability Testing and Test Plan Development</p> <p>8.5 Chapter 5 -- Design for Manufacturability 413</p> <p>8.6 Chapter 6 -- Design for Life Cycle Management 416</p> <p>8.7 Chapter 7 -- Root Cause Problem Solving, Failure Analysis, and</p> <p>Continual Improvement Techniques 418</p> <p>Index 421</p> | |
590 | _bWiley Frontlist Obook All English 2021 | ||
650 | 0 |
_aElectronic apparatus and appliances _xDesign and construction. _93995 |
|
650 | 7 |
_aElectronic apparatus and appliances _xDesign and construction _2fast _0(OCoLC)fst00906787 _93995 |
|
655 | 4 |
_aElectronic books. _93294 |
|
700 | 1 |
_aCaswell, Greg, _eauthor. _99708 |
|
776 | 0 | 8 |
_iPrint version: _aTulkoff, Cheryl. _tDesign for excellence in electronics manufacturing _dHoboken, NJ : Wiley, 2021. _z9781119109372 _w(DLC) 2020027863 |
830 | 0 |
_aQuality and reliability engineering series. _99709 |
|
856 | 4 | 0 |
_uhttps://doi.org/10.1002/9781119109402 _zWiley Online Library |
942 | _cEBK | ||
994 |
_a92 _bDG1 |
||
999 |
_c69480 _d69480 |