000 10260cam a22006138i 4500
001 on1178869054
003 OCoLC
005 20220711203646.0
006 m d u
007 cr |||||||||||
008 200617s2021 nju ob 001 0 eng
010 _a 2020027864
040 _aDLC
_beng
_erda
_cDLC
_dOCLCO
_dOCLCF
_dDG1
_dUKAHL
_dUKMGB
015 _aGBC0H6900
_2bnb
016 7 _a020007701
_2Uk
020 _a9781119109402
_q(electronic bk. : oBook)
020 _a111910940X
_q(electronic bk. : oBook)
020 _a9781119109396
_q(epub)
020 _a1119109396
_q(epub)
020 _a9781119109389
_q(adobe pdf)
020 _a1119109388
_q(adobe pdf)
020 _z9781119109372
_q(cloth)
029 1 _aUKMGB
_b020007701
029 1 _aAU@
_b000067575292
035 _a(OCoLC)1178869054
037 _a9781119109396
_bWiley
042 _apcc
050 0 0 _aTK7870
082 0 0 _a621.381
_223
049 _aMAIN
100 1 _aTulkoff, Cheryl,
_eauthor.
_99707
245 1 0 _aDesign for excellence in electronics manufacturing /
_cCheryl Tulkoff, National Instruments, US , Greg Caswell, DfR Solutions, US .
263 _a2103
264 1 _aHoboken, NJ :
_bWiley,
_c2021.
300 _a1 online resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bn
_2rdamedia
338 _aonline resource
_bnc
_2rdacarrier
490 1 _aQuality and reliability engineering series
504 _aIncludes bibliographical references and index.
520 _a"Design for Excellence in Electronics Manufacturing offers comprehensive, up to date coverage specific to design and reliability of electronics. The book will highlight how utilizing the DfX concepts of Design for Reliability, Design for Manufacturability, Design for Environment, Design for Testability, etc., will not only reduce research and development costs, but will also decrease time to market and allow companies to confidently issue warranty coverage. Ultimately, Design for Excellence will increase customer satisfaction, market share, and long term profits. The Design for Excellence material is critical for engineers and management who wish to learn best practices regarding product design. Practices need to be adjusted for different manufacturing processes, suppliers, use environments, and reliability expectations, and this book will demonstrate how to do just that"--
_cProvided by publisher.
588 _aDescription based on print version record and CIP data provided by publisher; resource not viewed.
505 0 _a<P>Contributors xxiii</p> <p>Foreword xxv</p> <p>Preface xxvii</p> <p>Acknowledgments xxix</p> <p>Acronyms xxxi</p> <p>Introduction iii</p> <p>1 Introduction to Design for Excellence</p> <p>1.1 Design for Excellence (DfX) in Electronics Manufacturing 1</p> <p>1.2 Chapter 2 -- Establishing a Reliability Program 3</p> <p>1.3 Chapter 3 -- Design for Reliability (DfR) 3</p> <p>1.4 Chapter 4 -- Design for the Use Environment: Reliability Testing</p> <p>and Test Plan Development 4</p> <p>1.5 Chapter 5 -- Design for Manufacturability 5</p> <p>1.6 Chapter 6 -- Design for Life Cycle Management 6</p> <p>1.7 Chapter 7 -- Root Cause Problem-Solving, Failure Analysis, and Continual Improvement Techniques 1.8 Chapter 8 -- Summary and Bringing It All Together 8</p> <p>2 Establishing a Reliability Program</p> <p>2.1 Introduction 9</p> <p>2.2 Best Practices and the Economics of a Reliability Program 12</p> <p>2.2.1 Best in Class Reliability Program Practices 13</p> <p>2.3 Elements of a Reliability Program 16</p> <p>2.3.1 Reliability Goals 17</p> <p>2.3.2 Defined Use Environments 18</p> <p>2.3.3 Software Reliability 21</p> <p>2.3.4 General Software Requirements 22</p> <p>2.4 Review of Commonly Used Probability and Statistics Concepts in Reliability</p> <p>2.4.1 Sources of Reliability Data 32</p> <p>2.4.2 Reliability Probability in Electronics 35</p> <p>2.4.3 Variation Statistics 35</p> <p>2.4.4 Reliability Statistics in Electronics 36</p> <p>2.5 Reliability Analysis and Prediction Methods 39</p> <p>2.6 Summary 45</p> <p>Bibliography 45</p> <p>3 Design for Reliability</p> <p>3.1 Introduction 47</p> <p>3.1.1 DfR at the Concept Stage 54</p> <p>3.2 Specifications (Product and Environment Definitions and Con</p> <p>cerns) 57</p> <p>3.3 Reliability Physics Analysis 61</p> <p>3.3.1 Reliability Physics Alternatives 68</p> <p>3.3.2 Reliability Physics Models and Examples 71</p> <p>3.3.3 Component Selection 77</p> <p>3.3.4 Critical Components 79</p> <p>3.3.5 Moisture Sensitivity Level 81</p> <p>3.3.6 Temperature Sensitivity Level 81</p> <p>3.3.7 Electrostatic Discharge 81</p> <p>3.3.8 Lifetime 83</p> <p>3.4 Surviving the Heat Wave 85</p> <p>3.5 Redundancy 89</p> <p>3.6 Plating Materials -- Tin Whiskers 91</p> <p>3.7 Derating and Uprating 94</p> <p>3.8 Reliability of New Packaging Technologies 96</p> <p>3.9 Printed Circuit Boards 98</p> <p>3.9.1 Surface Finishes 99</p> <p>3.9.2 Laminate Selection 107</p> <p>3.9.3 Cracking and Delamination 108</p> <p>3.9.4 Plated Through Holes- Vias 109</p> <p>3.9.5 Conductive Anodic Filament 112</p> <p>3.9.6 Strain and Flexure Issues 116</p> <p>3.9.7 Pad Cratering 119</p> <p>3.9.8 PCB Buckling 120</p> <p>3.9.9 Electrochemical Migration 121</p> <p>3.9.10 Cleanliness 134</p> <p>3.10 Non-Functional Pads 138</p> <p>3.11 Wearout Mechanisms 139</p> <p>3.12 Conformal Coating and Potting 143</p> <p>Bibliography 150</p> <p>4 Design for the Use Environment: Reliability Testing and Test</p> <p>Plan Development</p> <p>4.1 Introduction 155</p> <p>4.1.1 Elements of a Testing Program 157</p> <p>4.1.2 Know The Environment 162</p> <p>4.2 Standards and Measurements 164</p> <p>4.3 Failure Inducing Stressors 165</p> <p>4.4 Common Test Types 166</p> <p>4.4.1 Temperature Cycling 166</p> <p>4.4.2 Temperature-Humidity-Bias Testing 168</p> <p>4.4.3 Electrical Connection 169</p> <p>4.4.4 Corrosion Tests 169</p> <p>4.4.5 Power Cycling 170</p> <p>4.4.6 Electrical Loads 170</p> <p>4.4.7 Mechanical Bending 171</p> <p>4.4.8 Random and Sinusoidal Vibration 172</p> <p>4.4.9 Mechanical Shock 176</p> <p>4.4.10 ALT Testing 178</p> <p>4.4.11 HALT Testing 178</p> <p>4.4.12 EMC Testing Dos and Don'ts 181</p> <p>4.5 Test Plan Development 182</p> <p>4.5.1 The Process 184</p> <p>4.5.2 Failure Analysis 186</p> <p>4.5.3 Screening Tests 186</p> <p>4.5.4 Case Study 1 189</p> <p>4.5.5 Case Study 2 192</p> <p>4.5.6 Case Study 3 195</p> <p>Bibliography 198</p> <p>5 Design for Manufacturability (DfM)</p> <p>5.1 Introduction 201</p> <p>5.2 Overview of Industry Standard Organizations 207</p> <p>5.3 Overview of DfM Processes 212</p> <p>5.4 Component Topics 215</p> <p>5.5 Printed Circuit Board Topics 234</p> <p>5.5.1 Laminate Selection 234</p> <p>5.5.2 Surface Finish 235</p> <p>5.5.3 Discussion of Different Surface Finishes 236</p> <p>5.5.4 Stack-up 240</p> <p>5.5.5 Plated Through Holes 242</p> <p>5.5.6 Conductive Anodic Filament (CAF) Formation 243</p> <p>5.5.7 Copper Weight 244</p> <p>5.5.8 Pad Geometries 245</p> <p>5.5.9 Trace and Space Separation 247</p> <p>5.5.10 Non-Functional Pads 248</p> <p>5.5.11 Shipping and Handling 248</p> <p>5.5.12 Cleanliness and Contamination 249</p> <p>5.6 Process Materials 253</p> <p>5.6.1 Solder 253</p> <p>5.6.2 Solder Paste 254</p> <p>5.6.3 Flux 255</p> <p>5.6.4 Stencils 258</p> <p>5.6.5 Conformal Coating 259</p> <p>5.6.6 Potting 264</p> <p>5.6.7 Underfill 266</p> <p>5.6.8 Cleaning Materials 267</p> <p>5.6.9 Adhesives 267</p> <p>5.7 Summary: Implementing DfM 268</p> <p>Bibliography 269</p> <p>6 Design for Life Cycle Management</p> <p>6.1 Introduction 271</p> <p>6.2 Obsolescence Management 272</p> <p>6.2.1 Obsolescence Resolution Techniques 273</p> <p>6.2.2 Industry Standards 276</p> <p>6.2.3 Asset Security 278</p> <p>6.3 Long-Term Storage 280</p> <p>6.4 Long-Term Reliability Issues 283</p> <p>6.5 Counterfeit Prevention and Detection Strategies 288</p> <p>6.6 Supplier Selection 306</p> <p>6.6.1 Selecting a Printed Circuit Board Fabricator 309</p> <p>6.6.2 Auditing a Printed Circuit Board Fabricator 318</p> <p>6.6.3 Selecting a Contract Manufacturer 332</p> <p>6.6.4 Auditing a Contract Manufacturer 336</p> <p>6.6.5 Summary 342</p> <p>7 Root Cause Problem-solving, Failure Analysis and Continual Improvement Techniques</p> <p>7.1 Introduction 345</p> <p>7.1.1 Continual Improvement 347</p> <p>7.1.2 Problem-Solving 348</p> <p>7.1.3 Identification of Problems and Improvement Opportunities 348</p> <p>7.1.4 Overview of Industry Standard Organizations 352</p> <p>7.2 Root Cause Failure Analysis Methodology 357</p> <p>7.3 Failure Reporting, Analysis and Corrective Action System (FRACAS)</p> <p>7.4 Failure Analysis (FA) 373</p> <p>7.4.1 Failure Analysis Techniques 376</p> <p>7.4.2 Failure Verification 399</p> <p>7.4.3 Corrective Action 400</p> <p>7.4.4 Failure Report Closure 401</p> <p>7.5 Continuing Education and Improvement Activities 402</p> <p>7.6 Summary: Implementing Root Cause Methodology 403</p> <p>Bibliography 404</p> <p>8 Conclusion to Design for Excellence: Bringing It All Together</p> <p>8.1 Design for Excellence (DfX) in Electronics Manufacturing 407</p> <p>8.2 Chapter 2 -- Establishing a Reliability Program 408</p> <p>8.3 Chapter 3 -- Design for Reliability (DfR) 409</p> <p>8.4 Chapter 4 -- Design for the Use Environment: Reliability Testing and Test Plan Development</p> <p>8.5 Chapter 5 -- Design for Manufacturability 413</p> <p>8.6 Chapter 6 -- Design for Life Cycle Management 416</p> <p>8.7 Chapter 7 -- Root Cause Problem Solving, Failure Analysis, and</p> <p>Continual Improvement Techniques 418</p> <p>Index 421</p>
590 _bWiley Frontlist Obook All English 2021
650 0 _aElectronic apparatus and appliances
_xDesign and construction.
_93995
650 7 _aElectronic apparatus and appliances
_xDesign and construction
_2fast
_0(OCoLC)fst00906787
_93995
655 4 _aElectronic books.
_93294
700 1 _aCaswell, Greg,
_eauthor.
_99708
776 0 8 _iPrint version:
_aTulkoff, Cheryl.
_tDesign for excellence in electronics manufacturing
_dHoboken, NJ : Wiley, 2021.
_z9781119109372
_w(DLC) 2020027863
830 0 _aQuality and reliability engineering series.
_99709
856 4 0 _uhttps://doi.org/10.1002/9781119109402
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c69480
_d69480