000 10210cam a22006498i 4500
001 on1253439877
003 OCoLC
005 20220711203720.0
006 m o d
007 cr |||||||||||
008 210521s2021 nju o 001 0 eng
010 _a 2021024089
040 _aDLC
_beng
_erda
_cDLC
_dOCLCO
_dOCLCF
_dIEEEE
_dDG1
_dUKAHL
_dUKMGB
015 _aGBC1G2979
_2bnb
016 7 _a020341950
_2Uk
020 _a9781119694199
_q(electronic bk. : oBook)
020 _a1119694191
_q(electronic bk. : oBook)
020 _a9781119694182
_q(epub)
020 _a1119694183
_q(epub)
020 _a9781119694175
_q(adobe pdf)
020 _a1119694175
_q(adobe pdf)
020 _z9781119694168
_q(cloth)
024 7 _a10.1002/9781119694199
_2doi
029 1 _aAU@
_b000069276734
029 1 _aUKMGB
_b020341950
035 _a(OCoLC)1253439877
037 _a9536221
_bIEEE
042 _apcc
050 0 0 _aTJ223.P55
082 0 0 _a629.8/36
_223
049 _aMAIN
100 1 _aOrtega, Romeo,
_d1954-
_eauthor.
_910216
245 1 0 _aPID passivity-based control of nonlinear systems with applications /
_cRomeo Ortega, José Guadalupe Romero, Pablo Borja, Alejandro Donaire.
263 _a2109
264 1 _aHoboken, New Jersey :
_bWiley-IEEE Press,
_c[2021]
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
500 _aIncludes index.
520 _a"This book provides the theoretical foundations required to design this class of controllers in diverse practical control applications. To that end, the authors present several systematic methodologies of control design and their formal justification in term of passivity and Lyapunov Theory. The first chapters cover the general framework for PID-PBC design for nonlinear systems, and subsequent chapters introduce the specialization of the control design to broad range of practical applications, including power electronic, electrical drives, electrical circuits and mechanical and process control systems. Additionally, fundamental concepts related to PID regulators, passivity theory, Lyapunov stability and port-Hamiltonian systems are revisited."--
_cProvided by publisher.
588 _aDescription based on print version record and CIP data provided by publisher; resource not viewed.
505 0 _aAuthor Biographies xv -- Preface xix -- Acknowledgments xxiii -- Acronyms xxv -- Notation xxix -- 1 Introduction 1 -- 2 Motivation and Basic Construction of PID Passivity-based Control 5 -- 2.1 L2-Stability and Output Regulation to Zero 6 -- 2.2 Well-Posedness Conditions 9 -- 2.3 PID-PBC and the Dissipation Obstacle 10 -- 2.3.1 Passive systems and the dissipation obstacle 11 -- 2.3.2 Steady-state operation and the dissipation obstacle 12 -- 2.4 PI-PBC with y0 and Control by Interconnection 14 -- 3 Use of Passivity for Analysis and Tuning of PIDs: Two Practical Examples 19 -- 3.1 Tuning of the PI Gains for Control of Induction Motors 21 -- 3.1.1 Problem formulation 23 -- 3.1.2 Change of coordinates 27 -- 3.1.3 Tuning rules and performance intervals 30 -- 3.1.4 Concluding remarks 35 -- 3.2 PI-PBC of a Fuel Cell System 36 -- 3.2.1 Control problem formulation 41 -- 3.2.2 Limitations of current controllers and the role of passivity 46 -- 3.2.3 Model linearization and useful properties 48 -- 3.2.4 Main result 50 -- 3.2.5 An asymptotically stable PI-PBC 54 -- 3.2.6 Simulation results 57 -- 3.2.7 Concluding remarks and future work 58 -- 4 PID-PBC for Nonzero Regulated Output Reference 61 -- 4.1 PI-PBC for Global Tracking 63 -- 4.1.1 PI global tracking problem 63 -- 4.1.2 Construction of a shifted passive output 65 -- 4.1.3 A PI global tracking controller 67 -- 4.2 Conditions for Shifted Passivity of General Nonlinear Systems 68 -- 4.2.1 Shifted passivity definition 69 -- 4.2.2 Main results 70 -- 4.3 Conditions for Shifted Passivity of port-Hamiltonian Systems 73 -- 4.3.1 Problems formulation 74 -- 4.3.2 Shifted passivity 75 -- 4.3.3 Shifted passifiability via output-feedback 77 -- 4.3.4 Stability of the forced equilibria 78 -- 4.3.5 Application to quadratic pH systems 79 -- 4.4 PI-PBC of Power Converters 81 -- 4.4.1 Model of the power converters 81 -- 4.4.2 Construction of a shifted passive output 82 -- 4.4.3 PI stabilization 85 -- 4.4.4 Application to a quadratic boost converter 86 -- 4.5 PI-PBC of HVDC Power Systems 89 -- 4.5.1 Background 89 -- 4.5.2 Port-Hamiltonian model of the system 91 -- 4.5.3 Main result 93 -- 4.5.4 Relation of PI-PBC with Akagi's PQ method 95 -- 4.6 PI-PBC of Wind Energy Systems 96 -- 4.6.1 Background 96 -- 4.6.2 System model 98 -- 4.6.3 Control problem formulation 102 -- 4.6.4 Proposed PI-PBC 104 -- 4.7 Shifted Passivity of PI-Controlled Permanent Magnet Synchronous Motors 107 -- 4.7.1 Background 107 -- 4.7.2 Motor models 108 -- 4.7.3 Problem formulation 111 -- 4.7.4 Main result 113 -- 4.7.5 Conclusions and future research 114 -- 5 Parameterization of All Passive Outputs for port-Hamiltonian Systems 115 -- 5.1 Parameterization of all Passive Outputs 116 -- 5.2 Some Particular Cases 118 -- 5.3 Two Additional Remarks 120 -- 5.4 Examples 121 -- 5.4.1 A level control system 121 -- 5.4.2 A microelectromechanical optical switch 123 -- 6 Lyapunov Stabilization of port-Hamiltonian Systems 125 -- 6.1 Generation of Lyapunov Functions 127 -- 6.1.1 Basic PDE 128 -- 6.1.2 Lyapunov stability analysis 129 -- 6.2 Explicit Solution of the PDE 131 -- 6.2.1 The power shaping output 132 -- 6.2.2 A more general solution 133 -- 6.2.3 On the use of multipliers 135 -- 6.3 Derivative Action on Relative Degree Zero Outputs 137 -- 6.3.1 Preservation of the port-Hamiltonian Structure of I-PBC 138 -- 6.3.2 Projection of the new passive output 140 -- 6.3.3 Lyapunov stabilization with the new PID-PBC 141 -- 6.4 Examples 142 -- 6.4.1 A microelectromechanical optical switch (continued) 143 -- 6.4.2 Boost converter 144 -- 6.4.3 2-dimensional controllable LTI systems 146 -- 6.4.4 Control by Interconnection vs PI-PBC 148 -- 6.4.5 The use of the derivative action 150 -- 7 Underactuated Mechanical Systems 153 -- 7.1 Historical Review and Chapter Contents 153 -- 7.1.1 Potential energy shaping of fully actuated systems 154 -- 7.1.2 Total energy shaping of underactuated systems 156 -- 7.1.3 Two formulations of PID-PBC 157 -- 7.2 Shaping the Energy with a PID 158 -- 7.3 PID-PBC of port-Hamiltonian Systems 161 -- 7.3.1 Assumptions on the system 161 -- 7.3.2 A suitable change of coordinates 163 -- 7.3.3 Generating new passive outputs 165 -- 7.3.4 Projection of the total storage function 167 -- 7.3.5 Main stability result 169 -- 7.4 PID-PBC of Euler-Lagrange Systems 172 -- 7.4.1 Passive outputs for Euler-Lagrange systems 173 -- 7.4.2 Passive outputs for Euler-Lagrange systems in Spong's normal form 175 -- 7.5 Extensions 176 -- 7.5.1 Tracking constant speed trajectories 176 -- 7.5.2 Removing the cancellation of Va(qa) 178 -- 7.5.3 Enlarging the class of integral actions 179 -- 7.6 Examples 180 -- 7.6.1 Tracking for inverted pendulum on a cart 180 -- 7.6.2 Cart-pendulum on an inclined plane 182 -- 7.7 PID-PBC of Constrained Euler-Lagrange Systems 190 -- 7.7.1 System model and problem formulation 191 -- 7.7.2 Reduced purely differential model 195 -- 7.7.3 Design of the PID-PBC 196 -- 7.7.4 Main stability result 199 -- 7.7.5 Simulation Results 200 -- 7.7.6 Experimental Results 202 -- 8 Disturbance Rejection in port-Hamiltonian Systems 207 -- 8.1 Some Remarks On Notation and Assignable Equilibria 209 -- 8.1.1 Notational simplifications 209 -- 8.1.2 Assignable equilibria for constant d 210 -- 8.2 Integral Action on the Passive Output 211 -- 8.3 Solution Using Coordinate Changes 214 -- 8.3.1 A feedback equivalence problem 214 -- 8.3.2 Local solutions of the feedback equivalent problem 217 -- 8.3.3 Stability of the closed-loop 219 -- 8.4 Solution Using Nonseparable Energy Functions 221 -- 8.4.1 Matched and unmatched disturbances 222 -- 8.4.2 Robust matched disturbance rejection 225 -- 8.5 Robust Integral Action for Fully Actuated Mechanical Systems 230 -- 8.6 Robust Integral Action for Underactuated Mechanical Systems 237 -- 8.6.1 Standard interconnection and damping assignment PBC 239 -- 8.6.2 Main result 241 -- 8.7 A New Robust Integral Action for Underactuated Mechanical Systems 244 -- 8.7.1 System model 244 -- 8.7.2 Coordinate transformation 245 -- 8.7.3 Verification of requisites 246 -- 8.7.4 Robust integral action controller 248 -- 8.8 Examples 248 -- 8.8.1 Mechanical systems with constant inertia matrix 249 -- 8.8.2 Prismatic robot 250 -- 8.8.3 The Acrobot system 255 -- 8.8.4 Disk on disk system 260 -- 8.8.5 Damped vertical take-off and landing aircraft 265 -- A Passivity and Stability Theory for State-Space Systems 269 -- A.1 Characterization of Passive Systems 269 -- A.2 Passivity Theorem 271 -- A.3 Lyapunov Stability of Passive Systems 273 -- B Two Stability Results and Assignable Equilibria 275 -- B.1 Two Stability Results 275 -- B.2 Assignable Equilibria 276 -- C Some Differential Geometric Results 279 -- C.1 Invariant Manifolds 279 -- C.2 Gradient Vector Fields 280 -- C.3 A Technical Lemma 281 -- D Port-Hamiltonian Systems 283 -- D.1 Definition of port-Hamiltonian Systems and Passivity Property 283 -- D.2 Physical Examples 284 -- D.3 Euler-Lagrange Models 286 -- D.4 Port-Hamiltonian Representation of GAS Systems 288 -- Index 309.
590 _bWiley Frontlist Obook All English 2021
650 0 _aPID controllers.
_910217
650 0 _aNonlinear systems.
_92124
650 7 _aNonlinear systems.
_2fast
_0(OCoLC)fst01038810
_92124
650 7 _aPID controllers.
_2fast
_0(OCoLC)fst01049851
_910217
655 4 _aElectronic books.
_93294
700 1 _aRomero, J. G.,
_eauthor.
_910218
700 1 _aBorja, Pablo,
_eauthor.
_910219
700 1 _aDonaire, Alejandro,
_eauthor.
_910220
776 0 8 _iPrint version:
_aOrtega, Romeo, 1954-
_tPID passivity-based control of nonlinear systems with applications
_dHoboken, New Jersey : Wiley-IEEE Press, [2021]
_z9781119694168
_w(DLC) 2021024088
856 4 0 _uhttps://doi.org/10.1002/9781119694199
_zWiley Online Library
942 _cEBK
994 _a92
_bDG1
999 _c69637
_d69637