000 | 03194cam a22006018i 4500 | ||
---|---|---|---|
001 | on1268122821 | ||
003 | OCoLC | ||
005 | 20220711203727.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 210629s2021 nju ob 001 0 eng | ||
010 | _a 2021031987 | ||
040 |
_aDLC _beng _erda _cDLC _dOCLCO _dOCLCF _dUKAHL _dUKMGB _dDG1 |
||
015 |
_aGBC120220 _2bnb |
||
016 | 7 |
_a020104297 _2Uk |
|
020 |
_a9781119436782 _q(electronic bk. : oBook) |
||
020 |
_a1119436788 _q(electronic bk. : oBook) |
||
020 |
_a9781119436768 _q(epub) |
||
020 |
_a1119436761 _q(epub) |
||
020 |
_a9781119436799 _q(adobe pdf) |
||
020 |
_a1119436796 _q(adobe pdf) |
||
020 |
_z9781119436744 _q(hardback) |
||
024 | 7 |
_a10.1002/9781119436782 _2doi |
|
029 | 1 |
_aUKMGB _b020104297 |
|
029 | 1 |
_aAU@ _b000069859955 |
|
035 | _a(OCoLC)1268122821 | ||
037 |
_a9781119436768 _bWiley |
||
042 | _apcc | ||
050 | 0 | 0 | _aTA418.9.N35 |
082 | 0 | 0 |
_a620.1/15 _223 |
049 | _aMAIN | ||
245 | 0 | 0 |
_aMetal oxide nanoparticles : _bformation, functional properties, and interfaces / _cedited by Oliver Diwald, Paris-Lodron University of Salzburg, Austria, Thomas Berger, Paris-Lodron University of Salzburg, Austria. |
263 | _a2111 | ||
264 | 1 |
_aHoboken, NJ, USA : _bWiley, _c2021. |
|
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
520 |
_a"Metal oxide nanoparticles play a decisive role in numerous natural and technological processes ranging from mineral transformation, catalysis, photocatalysis, electronics, and sensor technology. Continuously increasing quantities of metal oxide nanoparticle powders are used in very diverse areas such as engineering, electronics, energy technology, and electronics. As such, they have by far the greatest market relevance among the currently available nanomaterials. Defects, surfaces and interfaces in metal oxide nanoparticles dominate most physico-chemical processes occurring within this class of functional materials. As a result, interface engineering, i.e. the controlled modification of composition, size and structure, has become a key tool to tune the function and stability of nanostructures, but also to induce complex assembly at the meso- and the microscale, providing access to a range of new materials"-- _cProvided by publisher. |
||
588 | _aDescription based on print version record and CIP data provided by publisher; resource not viewed. | ||
590 | _bWiley Frontlist Obook All English 2021 | ||
650 | 0 |
_aMetal nanoparticles. _910330 |
|
650 | 0 |
_aMetallic oxides. _99569 |
|
650 | 7 |
_aMetal nanoparticles. _2fast _0(OCoLC)fst02024660 _910330 |
|
650 | 7 |
_aMetallic oxides. _2fast _0(OCoLC)fst01017898 _99569 |
|
700 | 1 |
_aDiwald, Oliver, _eeditor. _910331 |
|
700 | 1 |
_aBerger, Thomas, _eeditor. _910332 |
|
776 | 0 | 8 |
_iPrint version: _tMetal oxide nanoparticles _dHoboken, NJ, USA : Wiley, 2021 _z9781119436744 _w(DLC) 2021031986 |
856 | 4 | 0 |
_uhttps://doi.org/10.1002/9781119436782 _zWiley Online Library |
942 | _cEBK | ||
994 |
_a92 _bDG1 |
||
999 |
_c69674 _d69674 |