000 05905cam a2200637Mu 4500
001 9781351047593
003 FlBoTFG
005 20220711212617.0
006 m d
007 cr |||||||||||
008 180825s2018 xx o 000 0 eng d
040 _aOCoLC-P
_beng
_cOCoLC-P
020 _a9781351047586
020 _a1351047582
020 _a9781351047593
020 _a1351047590
020 _z9781138485938 (hbk.)
020 _a9781351047579
020 _a1351047574
020 _a9781351047609
020 _a1351047604
024 8 _a10.1201/9781351047609
_2doi
035 _a(OCoLC)1049913870
035 _a(OCoLC-P)1049913870
050 4 _aTA705
082 0 4 _a620.191042
100 1 _aHossain, Sahadat.
_918106
245 1 0 _aSite Investigation Using Resistivity Imaging
_h[electronic resource].
260 _aMilton :
_bChapman and Hall/CRC,
_c2018.
300 _a1 online resource (244 p.)
336 _atext
_2rdacontent
337 _acomputer
_2rdamedia
338 _aonline resource
_2rdacarrier
500 _aDescription based upon print version of record.
505 0 _aCover; Half Title; Dedication; Title; Copyright; Contents; Preface; About the authors; 1 Introduction; 1.1 General; 1.2 Current subsurface investigation methods; 1.2.1 Standard Penetration Test (SPT); 1.2.2 Cone Penetration Testing (CPT); 1.2.3 Pressuremeter Test (PMT); 1.2.4 Dilatometer Test (DMT); 1.2.5 Vane Shear Test (VST); 1.3 Limitations of the conventional methods; 1.4 Electrical resistivity imaging method for site investigations; 2 Background: electrical resistivity of geomaterials and measurement methods; 2.1 General principle of electrical conductivity and resistivity
505 8 _a2.2 Electrical conduction in geomaterials2.3 Measurement of electrical resistivity; 2.3.1 Laboratory scale; 2.3.2 Field scale; 2.4 Electrical resistivity inversion modeling; 2.5 Electrical resistivity array methods; 2.5.1 Wenner array; 2.5.2 Dipole-dipole array; 2.5.3 Schlumberger array; 2.5.4 Pole-pole array; 2.5.5 Pole-dipole array; 2.6 Resistivity imaging method; 2.7 Advancement in RI technics: single channel vs multi-channel system; 2.8 Roll-along survey; 3 Geotechnical properties affecting electrical resistivity; 3.1 General
505 8 _a3.2 Geotechnical properties affecting electrical resistivity of soils3.2.1 Moisture content; 3.2.2 Unit weight; 3.2.3 Degree of saturation; 3.2.4 Volumetric moisture content; 3.2.5 Compaction condition; 3.2.6 Pore water characteristics; 3.2.7 Ion composition and minerology; 3.2.8 Structure, packing, and hydraulic conductivity; 3.2.9 Cation Exchange Capacity (CEC) and Specific Surface Area (SSA); 3.2.10 Temperature; 3.2.11 Consolidation properties; 3.2.12 Void ratio; 3.2.13 Atterberg limits; 3.2.14 Dielectric permittivity of soil; 3.2.15 Organic content; 3.2.16 Geologic formation
505 8 _a3.3 Sensitivity of electrical resistivity with geotechnical parameters4 Electrical mixing models: bridging the gap between geophysical and geotechnical engineering; 4.1 General; 4.2 Available electrical mixing models; 4.3 Applicability and limitations of the available models; 4.4 Practically applicable models (Kibria and Hossain, 2015 and 2016); 4.4.1 Compacted clay model (Kibria and Hossain, 2015); 4.4.2 Evaluation of compacted clay properties using Kibria and Hossain's (2015) model; 4.4.3 Undisturbed clay model (Kibria and Hossain, 2016)
505 8 _a4.4.4 Evaluation of undisturbed clay properties using the Kibria and Hossain (2016) model4.4.5 Limitations of the Kibria and Hossain models (2015 and 2016); 4.4.6 Evaluation of corrosion potential (Kibria and Hossain, 2017); 5 Electrical resistivity of municipal solid waste (MSW); 5.1 General; 5.2 Effect of moisture content on electrical resistivity; 5.2.1 Fresh MSW samples; 5.2.2 Landfilled MSW samples; 5.2.3 Degraded MSW samples; 5.3 Effect of unit weight; 5.3.1 Fresh MSW samples; 5.3.2 Landfilled MSW samples; 5.3.3 Degraded MSW samples; 5.4 Effect of decomposition
500 _a5.5 Effect of temperature
520 3 _aSubsurface investigation is the most important phase of any civil engineering construction or development activities. The geologic conditions can be extremely complex, variable, and subject to change with time; soil test borings and in-situ tests are employed to obtain subsoil information. Resistivity Imaging (RI) is a non-destructive, fast and cost-effective method of site investigation and soil characterization. Site Investigation using Resistivity Imaging aims to summarize pertinent details of RI in site investigation for geotechnical and geo-environmental applications. It aims to bridge the gap that currently exists between the geotechnical/geo-environmental and geophysical engineering community. The geotechnical and geo-environmental engineers will be able to interpret the geophysical data and utilize the information for their design. It will be a comprehensive handbook for the application of RI in geotechnical and geo-environmental site investigations.
588 _aOCLC-licensed vendor bibliographic record.
650 7 _aTECHNOLOGY & ENGINEERING / Construction / General.
_2bisacsh
_95602
650 7 _aTECHNOLOGY & ENGINEERING / Civil / General.
_2bisacsh
_918107
650 0 _aGeotechnical engineering
_xTechnique.
_918108
650 0 _aEarth resistance (Geophysics)
_xMeasurement.
_918109
650 0 _aSoils
_xAnalysis
_xTechnique.
_918110
650 0 _aElectrical impedance tomography.
_918111
650 0 _aEngineering geology.
_94157
700 1 _aKhan, Sadik.
_913910
700 1 _aKibria, Golam.
_913911
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781351047593
_zClick here to view.
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
938 _aTaylor & Francis
_bTAFR
_n9781351047609
942 _cEBK
999 _c71718
_d71718