000 03618cam a2200565Mi 4500
001 9781498763615
003 FlBoTFG
005 20220711212819.0
006 m o d
007 cr cn|||||||||
008 170721s2017 flua o 000 0 eng d
040 _aOCoLC-P
_beng
_erda
_epn
_cOCoLC-P
020 _a9781315153452
_q(e-book ;
_qPDF)
020 _a1315153459
020 _a9781498763615
020 _a1498763618
020 _a9781498763592
020 _a1498763596
035 _a(OCoLC)994491712
_z(OCoLC)1003927849
_z(OCoLC)1015214145
_z(OCoLC)1029486959
_z(OCoLC)1031041626
035 _a(OCoLC-P)994491712
050 4 _aQA556
_b.H676 2017
082 0 4 _a516.16
100 1 _aHormann, Kai,
_eauthor.
_919872
245 1 0 _aGeneralized Barycentric Coordinates in Computer Graphics and Computational Mechanics /
_cKai Hormann.
250 _aFirst edition.
264 1 _aBoca Raton, FL :
_bCRC Press,
_c2017.
300 _a1 online resource :
_btext file, PDF
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
520 2 _a"In Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics, eminent computer graphics and computational mechanics researchers provide a state-of-the-art overview of generalized barycentric coordinates. Commonly used in cutting-edge applications such as mesh parametrization, image warping, mesh deformation, and finite as well as boundary element methods, the theory of barycentric coordinates is also fundamental for use in animation and in simulating the deformation of solid continua. Generalized Barycentric Coordinates is divided into three sections, with five chapters each, covering the theoretical background, as well as their use in computer graphics and computational mechanics. A vivid 16-page insert illustrates the stunning applications of this fascinating research area."--Provided by publisher.
505 0 _a""Cover ""; ""Half Title ""; ""Title ""; ""Copyrights ""; ""Contents ""; ""Preface ""; ""Contributors ""; ""Section I. Theoretical Foundations ""
505 8 _a""Chapter 1. Barycentric Coordinates And Their Properties """" 1.1 Introduction""; ""1.1.1 Barycentric Coordinates For Simplices ""
505 8 _a""1.1.2 Generalized Barycentric Coordinates """"1.2 2D Coordinates""; ""1.2.1 Wachspress Coordinates ""; ""1.2.2 Discrete Harmonic Coordinates ""
505 8 _a""1.2.3 Mean Value Coordinates """"1.2.4 Complete Family Of Coordinates ""; ""1.2.5 Metric Coordinates ""; ""1.2.6 Poisson Coordinates ""
505 8 _a""1.2.7 GordonĂ¢#x80;#x93;wixom Coordinates """"1.2.8 Harmonic Coordinates ""; ""1.2.9 Maximum Entropy Coordinates ""; ""1.2.10 Local Coordinates ""
588 _aOCLC-licensed vendor bibliographic record.
650 0 7 _aMATHEMATICS
_xNumber Systems.
_2bisacsh
_910898
650 0 7 _aSCIENCE
_xMechanics
_xGeneral.
_2bisacsh
_96096
650 0 _aBarycentric coordinates.
_919873
650 0 _aMechanics.
_98758
650 0 _aComputer graphics
_xMathematics.
_93325
650 0 _aCenter of mass.
_919874
700 1 _aSukumar, N.
_919875
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781498763615
_qapplication/PDF
_zDistributed by publisher. Purchase or institutional license may be required for access.
856 4 0 _3Taylor & Francis
_uhttps://www.taylorfrancis.com/books/9781315153452
_zClick here to view.
856 4 2 _3OCLC metadata license agreement
_uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf
938 _aTaylor & Francis
_bTAFR
_n9781315153452
942 _cEBK
999 _c72212
_d72212