000 | 03349cam a2200313Ii 4500 | ||
---|---|---|---|
001 | 9781315196640 | ||
008 | 180331s2017 si a ob 001 0 eng d | ||
020 |
_a9781315196640 _q(e-book : PDF) |
||
020 |
_a9781351767651 _q(e-book: Mobi) |
||
020 |
_z9789814774017 _q(hardback) |
||
024 | 7 |
_a10.1201/b22335 _2doi |
|
035 | _a(OCoLC)1000427807 | ||
050 | 4 |
_aQD272.S6 _bL68 2017 |
|
082 | 0 | 4 |
_a547.30858 _bL884 |
100 | 1 |
_aLottermoser, Werner, _eauthor. _919972 |
|
245 | 1 | 4 |
_aThe difference electron nanoscope : _bmethods and applications / _cWerner Lottermoser. |
250 | _aFirst edition. | ||
264 | 1 |
_aSingapore : _bPan Stanford Publishing, _c2017. |
|
300 | _a1 online resource (x, 254 pages) | ||
504 | _aIncludes bibliographical references (pages 241-246). | ||
505 | 0 | _achapter Introduction: What Is a DEN -- chapter 1 An Overview on the Methods Involved -- chapter 2 The Basic Quantity: The Electric Field Gradient (efg) -- chapter 3 The Three Pillars of the DEN Method -- 3.1 The Experimental Methods to Derive a -- chapter 4 The Extension of Pillar 3: The DEN Method -- 4.1 The Principal Idea -- chapter 5 Application of the DEN on a Representative Example (Synthetic Fayalite Fe2SiO4) -- chapter 6 Summary and Outlook. | |
520 | _aThis book deals with the difference electron nanoscope (DEN), whose principles have been invented and realised by the book author. The DEN is based on a smart combination of diffractometric and spectroscopic data and uses a visualisation of three-dimensional difference electron densities (in our case stemming from 3d orbitals) in order to obtain the key quantity involved, the electric field gradient (efg). However, the DEN is no machine, as the title of the book might infer. It is a computer program running on a fast computer system displaying 3D difference electron hyperareas floating in space and the relevant efg as a wire frame model within the unit cell of the sample involved. In this sense, it acts on a sub-nanometer scale (hence the term nanoscope) and generates images of uncompared symmetrical and physical evidence and beauty.For the first time, diffractometry and spectroscopy have been integrated for the common synergetic effects that may contribute to a better understanding of electric and magnetic interactions in a crystal. The experimental derivation of the common quantity, the efg, is not confined to iron-containing samples, as the use of Mossbauer spectroscopy might infer, but can also be determined by nuclear quadrupole resonance that is not confined to special nuclides. Hence, the DEN can be applied to a huge multitude of scientifically interesting specimens since the main method involved, diffractometry in a wide sense, has no general limitations at all. So it is a rather universal method, and the monograph might contribute to a wide distribution of the method in the scientific world. Has anyone seen a real orbital before: a real orbital distribution in a crystal unit cell together with its efg tensor ellipsoid? In this book, one can see it.--Provided by publisher. | ||
650 | 0 |
_aSpectrum analysis. _911993 |
|
650 | 0 |
_aMaterials science. _95803 |
|
650 | 0 |
_aChemistry, Technical. _914638 |
|
776 | 0 | 8 |
_iPrint version: _z9789814774017 |
856 | 4 | 0 |
_uhttps://www.taylorfrancis.com/books/9781315196640 _zClick here to view. |
942 | _cEBK | ||
999 |
_c72242 _d72242 |