000 03563cam a2200445Ma 4500
001 00011446
003 WSP
007 cr |n|||||||||
008 200308s2020 si a ob 001 0 eng d
020 _a9789811206405
_q(ebook)
020 _a9811206406
_q(ebook)
020 _z9811206392 (hbk.)
020 _z9789811206399 (hbk.)
020 _z9789811207716 (pbk.)
020 _z9811207712 (pbk.)
040 _a WSPC
_b eng
_c WSPC
050 0 4 _aQA185.D37
_bG35 2020
072 7 _aMAT
_x002050
_2bisacsh
072 7 _aMAT
_x042000
_2bisacsh
072 7 _aCOM
_x014000
_2bisacsh
082 0 4 _a512.50285
_223
100 1 _aGallier, Jean H.
_94003
245 1 0 _aLinear algebra and optimization with applications to machine learning.
_nVolume 1,
_pLinear algebra for computer vision, robotics, and machine learning
_h[electronic resource] /
_cJean Gallier, Jocelyn Qqaintance.
246 1 0 _aLinear algebra for computer vision, robotics, and machine learning
260 _aSingapore :
_bWorld Scientific Publishing Co. Pte. Ltd.,
_cc2020.
300 _a1 online resource (824 p.)
538 _aSystem requirements: Adobe Acrobat reader.
538 _aMode of access: World Wide Web.
504 _aIncludes bibliographical references and index.
505 0 _ach. 1. Introduction -- ch. 2. Vector spaces, bases, linear maps -- ch. 3. Matrices and linear maps -- ch. 4. Haar bases, haar wavelets, hadamard matrices -- ch. 5. Direct sums, rank-nullity theorem, affine maps -- ch. 6. Determinants -- ch. 7. Gaussian elimination, LU-factorization, Cholesky factorization, reduced row echelon form -- ch. 8. Vector norms and matrix norms -- ch. 9. Iterative methods for solving linear systems -- ch. 10. The dual space and duality -- ch. 11. Euclidean spaces -- ch. 12. QR-decomposition for arbitrary matrices -- ch. 13. Hermitian spaces -- ch. 14. Eigenvectors and eigenvalues -- ch. 15. Unit quaternions and rotations in SO(3) -- ch. 16. Spectral theorems in euclidean and hermitian spaces -- ch. 17. Computing eigenvalues and eigenvectors -- ch. 18. Graphs and graph laplacians; basic facts -- ch. 19. Spectral graph drawing -- ch. 20. Singular value decomposition and polar form -- ch. 21. Applications of SVD and pseudo-inverses -- ch. 22. Annihilating polynomials and the primary decomposition -- Bibliography -- Index.
520 _a"This book provides the mathematical fundamentals of linear algebra to practicers in computer vision, machine learning, robotics, applied mathematics, and electrical engineering. By only assuming a knowledge of calculus, the authors develop, in a rigorous yet down to earth manner, the mathematical theory behind concepts such as: vectors spaces, bases, linear maps, duality, Hermitian spaces, the spectral theorems, SVD, and the primary decomposition theorem. At all times, pertinent real-world applications are provided. This book includes the mathematical explanations for the tools used which we believe that is adequate for computer scientists, engineers and mathematicians who really want to do serious research and make significant contributions in their respective fields"--Publisher's website.
650 0 _aAlgebras, Linear
_xData processing.
_94024
650 0 _aComputer science
_xMathematics.
_93866
650 0 _aComputer-aided design.
_93932
650 0 _aRobotics.
_92393
655 0 _aElectronic books.
_93294
700 1 _aQuaintance, Jocelyn.
_94006
856 4 0 _uhttps://www.worldscientific.com/worldscibooks/10.1142/11446#t=toc
_zAccess to full text is restricted to subscribers.
942 _cEBK
999 _c72583
_d72583