000 03478nam a2200493 i 4500
001 6267198
003 IEEE
005 20220712204556.0
006 m o d
007 cr |n|||||||||
008 151223s2008 maua ob 001 eng d
020 _a9780262255097
_qebook
020 _z026225509X
_qelelelectronic
020 _z9780262072977
_qprint
035 _a(CaBNVSL)mat06267198
035 _a(IDAMS)0b000064818b4160
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aP309
_b.L43 2009eb
082 0 4 _a418/.020285
_222
245 0 0 _aLearning machine translation /
_c[edited by] Cyril Goutte ... [et al.].
264 1 _aCambridge, Massachusetts :
_bMIT Press,
_cc2009.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2008]
300 _a1 PDF (xii, 316 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aNeural information processing series
504 _aIncludes bibliographical references (p. [277]-306) and index.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aThe Internet gives us access to a wealth of information in languages we don't understand. The investigation of automated or semi-automated approaches to translation has become a thriving research field with enormous commercial potential. This volume investigates how Machine Learning techniques can improve Statistical Machine Translation, currently at the forefront of research in the field. The book looks first at enabling technologies--technologies that solve problems that are not Machine Translation proper but are linked closely to the development of a Machine Translation system. These include the acquisition of bilingual sentence-aligned data from comparable corpora, automatic construction of multilingual name dictionaries, and word alignment. The book then presents new or improved statistical Machine Translation techniques, including a discriminative training framework for leveraging syntactic information, the use of semi-supervised and kernel-based learning methods, and the combination of multiple Machine Translation outputs in order to improve overall translation quality.ContributorsSrinivas Bangalore, Nicola Cancedda, Josep M. Crego, Marc Dymetman, Jakob Elming, George Foster, Jesƒus Gim�nez, Cyril Goutte, Nizar Habash, Gholamreza Haffari, Patrick Haffner, Hitoshi Isahara, Stephan Kanthak, Alexandre Klementiev, Gregor Leusch, Pierre Mah�, Llu�s M�rquez, Evgeny Matusov, I. Dan Melamed, Ion Muslea, Hermann Ney, Bruno Pouliquen, Dan Roth, Anoop Sarkar, John Shawe-Taylor, Ralf Steinberger, Joseph Turian, Nicola Ueffing, Masao Utiyama, Zhuoran Wang, Benjamin Wellington, Kenji Yamada.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
550 _aMade available online by Ebrary.
588 _aDescription based on PDF viewed 12/23/2015.
650 0 _aMachine translating
_xStatistical methods.
_921447
655 0 _aElectronic books.
_93294
700 1 _aGoutte, Cyril.
_921448
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_921449
710 2 _aMIT Press,
_epublisher.
_921450
776 0 8 _iPrint version
_z9780262072977
830 0 _aNeural information processing series
_921451
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=6267198
942 _cEBK
999 _c72856
_d72856