000 03652nam a2200505 i 4500
001 7862440
003 IEEE
005 20220712204901.0
006 m o d
007 cr |n|||||||||
008 170316s2008 maua ob 001 eng d
010 _z 2016015228 (print)
020 _a9780262335768
_qelectronic
020 _z9780262035057
_qhardcover
020 _z9780262529488
_qpaperback
035 _a(CaBNVSL)mat07862440
035 _a(IDAMS)0b00006485bebefd
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQA76.9.B45
_bB555 2016eb
082 0 0 _a005.7
_223
245 0 0 _aBig data is not a monolith /
_cedited by Cassidy R. Sugimoto, Hamid R. Ekbia, and Michael Mattioli.
264 1 _aCambridge, Massachusetts :
_bThe MIT Press,
_c[2016]
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2016]
300 _a1 PDF (xxi, 284 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aInformation policy series
504 _aIncludes bibliographical references and index.
506 _aRestricted to subscribers or individual electronic text purchasers.
520 _aBig data is ubiquitous but heterogeneous. Big data can be used to tally clicks and traffic on web pages, find patterns in stock trades, track consumer preferences, identify linguistic correlations in large corpuses of texts. This book examines big data not as an undifferentiated whole but contextually, investigating the varied challenges posed by big data for health, science, law, commerce, and politics. Taken together, the chapters reveal a complex set of problems, practices, and policies.The advent of big data methodologies has challenged the theory-driven approach to scientific knowledge in favor of a data-driven one. Social media platforms and self-tracking tools change the way we see ourselves and others. The collection of data by corporations and government threatens privacy while promoting transparency. Meanwhile, politicians, policy makers, and ethicists are ill-prepared to deal with big data's ramifications. The contributors look at big data's effect on individuals as it exerts social control through monitoring, mining, and manipulation; big data and society, examining both its empowering and its constraining effects; big data and science, considering issues of data governance, provenance, reuse, and trust; and big data and organizations, discussing data responsibility, "data harm," and decision making.ContributorsRyan Abbott, Cristina Alaimo, Kent R. Anderson, Mark Andrejevic, Diane E. Bailey, Mike Bailey, Mark Burdon, Fred H. Cate, Jorge L. Contreras, Simon DeDeo, Hamid R. Ekbia, Allison Goodwell, Jannis Kallinikos, Inna Kouper, M. Lynne Markus, Michael Mattioli, Paul Ohm, Scott Peppet, Beth Plale, Jason Portenoy, Julie Rennecker, Katie Shilton, Dan Sholler, Cassidy R. Sugimoto, Isuru Suriarachchi, Jevin D. West.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 03/16/2017.
650 0 _aBig data.
_94174
655 0 _aElectronic books.
_93294
700 1 _aSugimoto, Cassidy R.,
_eeditor.
_924997
700 1 _aEkbia, H. R.
_q(Hamid Reza),
_d1955-
_eeditor.
_924998
700 1 _aMattioli, Michael,
_eeditor.
_924999
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_925000
710 2 _aMIT Press,
_epublisher.
_925001
830 0 _aInformation policy series
_921521
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=7862440
942 _cEBK
999 _c73484
_d73484