000 04980nam a2201237 i 4500
001 5201503
003 IEEE
005 20220712205544.0
006 m o d
007 cr |n|||||||||
008 101007t20152007njua ob 001 0 eng d
020 _a9780470140529
_qelectronic
020 _z9780471681823
_qpaper
020 _z0470140526
_qelectronic
024 7 _a10.1002/9780470140529
_2doi
035 _a(CaBNVSL)mat05201503
035 _a(IDAMS)0b0000648104a999
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK5102.9
_b.C475 2007eb
082 0 4 _a006.3/1
_222
100 1 _aCherkassky, Vladimir S.
_eauthor.
_926057
245 1 0 _aLearning from data :
_bconcepts, theory, and methods /
_cVladimir Cherkassky, Filip Mulier.
250 _a2nd ed.
264 1 _aHoboken, New Jersey :
_bIEEE Press :
_cc2007.
300 _a1 PDF (xviii, 538 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
504 _aIncludes bibliographical references (p. 519-531) and index.
505 0 _aProblem statement, classical approaches, and adaptive learning -- Regularization framework -- Statistical learning theory -- Nonlinear optimization strategies -- Methods for data reduction and dimensionality reduction -- Methods for regression -- Classification -- Support vector machines -- Noninductive inference and alternative learning formulations.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aAn interdisciplinary framework for learning methodologies--covering statistics, neural networks, and fuzzy logic, this book provides a unified treatment of the principles and methods for learning dependencies from data. It establishes a general conceptual framework in which various learning methods from statistics, neural networks, and fuzzy logic can be applied--showing that a few fundamental principles underlie most new methods being proposed today in statistics, engineering, and computer science. Complete with over one hundred illustrations, case studies, and examples making this an invaluable text.
530 _aAlso available in print.
533 _aElectronic reproduction.
_bPiscataway, N.J. :
_cIEEE,
_d2010.
_nMode of access: World Wide Web.
_nSystem requirements: Web browser.
_nTitle from title screen (viewed on Oct. 7, 2010).
_nAccess may be restricted to users at subscribing institutions.
538 _aMode of access: World Wide Web.
588 _aDescription based on PDF viewed 12/19/2015.
650 0 _aAdaptive signal processing.
_94447
650 0 _aMachine learning.
_91831
650 0 _aNeural networks (Computer science)
_93414
650 0 _aFuzzy systems.
_93413
655 0 _aElectronic books.
_93294
695 _aAdaptation model
695 _aAerospace electronics
695 _aAnalytical models
695 _aApproximation algorithms
695 _aApproximation methods
695 _aArtificial intelligence
695 _aArtificial neural networks
695 _aBibliographies
695 _aBiological system modeling
695 _aBiology
695 _aBooks
695 _aBoosting
695 _aClustering algorithms
695 _aClustering methods
695 _aComplexity theory
695 _aConvergence
695 _aData models
695 _aDictionaries
695 _aEigenvalues and eigenfunctions
695 _aEncoding
695 _aEstimation
695 _aFunction approximation
695 _aGenerators
695 _aHafnium
695 _aHumans
695 _aHypercubes
695 _aIndexes
695 _aIterative methods
695 _aKernel
695 _aLearning systems
695 _aLinear approximation
695 _aMachine learning
695 _aMatrix decomposition
695 _aMinimization
695 _aNewton method
695 _aOptimization
695 _aOptimization methods
695 _aParameter estimation
695 _aPattern recognition
695 _aPolynomials
695 _aPredictive models
695 _aPrincipal component analysis
695 _aProbabilistic logic
695 _aProbability
695 _aPrototypes
695 _aRisk management
695 _aSections
695 _aSingular value decomposition
695 _aStatistical learning
695 _aSupport vector machines
695 _aSymmetric matrices
695 _aTaxonomy
695 _aTraining
695 _aTraining data
695 _aUncertainty
695 _aUnsupervised learning
695 _aVector quantization
695 _aVectors
695 _aZinc
700 1 _aMulier, Filip.
_926058
710 2 _aIEEE Xplore (Online service),
_edistributor.
_926059
776 0 8 _iPrint version:
_z9780471681823
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5201503
942 _cEBK
999 _c73671
_d73671