000 | 13511nam a2201705 i 4500 | ||
---|---|---|---|
001 | 5236513 | ||
003 | IEEE | ||
005 | 20220712205603.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 071115t20152007njua ob 001 0 eng d | ||
020 |
_a9780470124581 _qelectronic |
||
020 |
_z0471263885 _qpaper |
||
020 |
_z1601195117 _qebook |
||
020 |
_z9780471263883 _qpaper |
||
020 |
_z9781601195111 _qebook |
||
020 |
_z047012458X _qelectronic |
||
024 | 7 |
_a10.1002/047012458X _2doi |
|
035 | _a(CaBNVSL)mat05236513 | ||
035 | _a(IDAMS)0b00006481094b36 | ||
040 |
_aCaBNVSL _beng _erda _cCaBNVSL _dCaBNVSL |
||
050 | 4 |
_aQC665.E4 _bB57 2007eb |
|
082 | 0 | 4 |
_a530.141 _222 |
100 | 1 |
_aBladel, J. van _q(Jean), _d1922- _eauthor. _926319 |
|
245 | 1 | 0 |
_aElectromagnetic fields / _cJean G. Van Bladel. |
250 | _a2nd ed. | ||
264 | 1 |
_aHoboken, New Jersey : _bWiley-Interscience, _cc2007. |
|
300 |
_a1 PDF (xiv, 1155 pages) : _billustrations. |
||
336 |
_atext _2rdacontent |
||
337 |
_aelectronic _2isbdmedia |
||
338 |
_aonline resource _2rdacarrier |
||
490 | 1 |
_aIEEE press series on electromagnetic wave theory ; _v19 |
|
500 | _aPrevious ed.: 1991. | ||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aPreface -- 1. Linear Analysis -- 1.1 Linear Spaces -- 1.2 Linear Transformations -- 1.3 The Inversion Problem -- 1.4 Green's Functions -- 1.5 Reciprocity -- 1.6 Green's Dyadics -- 1.7 Convergence of a Series -- 1.8 Eigenfunctions -- 1.9 Integral Operators -- 1.10 Eigenfunction Expansions -- 1.11 Discretization -- 1.12 Matrices -- 1.13 Solution of Matrix Equations: Stability -- 1.14 Finite Differences -- 1.15 Perturbations -- 2. Variational Techniques -- 2.1 Stationary functionals -- 2.2 A Suitable Functional for the String Problem -- 2.3 Functionals for the General L Transformation -- 2.4 Euler's Equations of Some Important Functionals -- 2.5 Discretization of the Trial Functions -- 2.6 Simple Finite Elements for Planar Problems -- 2.7 More Finite Elements -- 2.8 Direct Numerical Solution of Matrix Problems -- 2.9 Iterative Numerical Solution of Matrix Problems -- 3. Electrostatic Fields in the Presence of Dielectrics -- 3.1 Volume Charges in Vacuum -- 3.2 Green's Function for Infinite Space -- 3.3 Multipole Expansion -- 3.4 Potential Generated by a Single Layer of Charge -- 3.5 Potential Generated by a Double Layer of Charge -- 3.6 Potential Generated by a Linear Charge -- 3.7 Spherical Harmonics -- 3.8 Dielectric Materials -- 3.9 Cavity Fields -- 3.10 Dielectric Sphere in an External Field -- 3.11 Dielectric Spheroid in an Incident Field -- 3.12 Numerical Methods -- 4. Electrostatic Fields in the Presence of Conductors -- 4.1 Conductivity -- 4.2 Potential Outside a Charged Conductor -- 4.3 Capacitance Matrix -- 4.4 The Dirichlet Problem -- 4.5 The Neumann Problem -- 4.6 Numerical Solution of the Charge Density Problem -- 4.7 Conductor in an External Field -- 4.8 Conductors in the Presence of Dielectrics -- 4.9 Current Injection into a Conducting Volume -- 4.10 Contact Electrodes -- 4.11 Chains of Conductors -- 5. Special Geometries for the Electrostatic Field -- 5.1 Two-Dimensional Potentials in the Plane -- 5.2 Field Behavior at a ConductingWedge. | |
505 | 8 | _a5.3 Field Behavior at a DielectricWedge -- 5.4 Separation of Variables in Two Dimensions -- 5.5 Two-Dimensional Integral Equations -- 5.6 Finite Methods in Two Dimensions -- 5.7 Infinite Computational Domains -- 5.8 More Two-Dimensional Techniques -- 5.9 Layered Media -- 5.10 Apertures -- 5.11 Axisymmetric Geometries -- 5.12 Conical Boundaries -- 6. Magnetostatic Fields -- 6.1 Magnetic Fields in Free Space: Vector Potential -- 6.2 Fields Generated by Linear Currents -- 6.3 Fields Generated by Surface Currents -- 6.4 Fields at Large Distances from the Sources -- 6.5 Scalar Potential in Vacuum -- 6.6 Magnetic Materials -- 6.7 Permanent Magnets -- 6.8 The Limit of Infinite Permeability -- 6.9 Two-Dimensional Fields in the Plane -- 6.10 Axisymmetric Geometries -- 6.11 Numerical Methods: Integral Equations -- 6.12 Numerical Methods: Finite Elements -- 6.13 Nonlinear Materials -- 6.14 Strong Magnetic Fields and Force-Free Currents -- 7. Radiation in Free Space -- 7.1 Maxwell's Equations -- 7.2 TheWave Equation -- 7.3 Potentials -- 7.4 Sinusoidal Time Dependence: Polarization -- 7.5 Partially Polarized Fields -- 7.6 The Radiation Condition -- 7.7 Time-Harmonic Potentials -- 7.8 Radiation Patterns -- 7.9 Green's Dyadics -- 7.10 Multipole Expansion -- 7.11 Spherical Harmonics -- 7.12 Equivalent Sources -- 7.13 LinearWire Antennas -- 7.14 CurvedWire Antennas: Radiation -- 7.15 Transient Sources -- 8. Radiation in a Material Medium -- 8.1 Constitutive Equations -- 8.2 PlaneWaves -- 8.3 Ray Methods -- 8.4 Beamlike Propagation -- 8.5 Green's Dyadics -- 8.6 Reciprocity -- 8.7 Equivalent Circuit of an Antenna -- 8.8 Effective Antenna Area -- 9. Plane Boundaries -- 9.1 PlaneWave Incident on a Plane Boundary -- 9.2 Propagation Through a Layered Medium -- 9.3 The Sommerfeld Dipole Problem -- 9.4 Multilayered Structures -- 9.5 Periodic Structures -- 9.6 Field Penetration Through Apertures -- 9.7 Edge Diffraction -- 10. Resonators. | |
505 | 8 | _a10.1 Eigenvectors for an Enclosed Volume -- 10.2 Excitation of a Cavity -- 10.3 Determination of the Eigenvectors -- 10.4 Resonances -- 10.5 Open Resonators: Dielectric Resonances -- 10.6 Aperture Coupling -- 10.7 Green's Dyadics -- 11. Scattering: Generalities -- 11.1 The Scattering Matrix -- 11.2 Cross Sections -- 11.3 Scattering by a Sphere -- 11.4 Resonant Scattering -- 11.5 The Singularity Expansion Method -- 11.6 Impedance Boundary Conditions -- 11.7 Thin Layers -- 11.8 Characteristic Modes -- 12. Scattering: Numerical Methods -- 12.1 The Electric Field Integral Equation -- 12.2 The Magnetic Field Integral Equation -- 12.3 The T-Matrix -- 12.4 Numerical Procedures -- 12.5 Integral Equations for Penetrable Bodies -- 12.6 Absorbing Boundary Conditions -- 12.7 Finite Elements -- 12.8 Finite Differences in the Time Domain -- 13. High- and Low-Frequency Fields -- 13.1 Physical Optics -- 13.2 Geometrical Optics -- 13.3 Geometric Theory of Diffraction -- 13.4 Edge Currents and Equivalent Currents -- 13.5 Hybrid Methods -- 13.6 Low-Frequency Fields: The Rayleigh Region -- 13.7 Non-Conducting Scatterers at Low Frequencies -- 13.8 Perfectly Conducting Scatterers at Low Frequencies -- 13.9 Good Conductors -- 13.10 Stevenson's Method Applied to Good Conductors -- 13.11 Circuit Parameters -- 13.12 Transient Eddy Currents -- 14. Two-Dimensional Problems -- 14.1 E and H Waves -- 14.2 Scattering by Perfectly Conducting Cylinders -- 14.3 Scattering by Penetrable Circular Cylinders -- 14.4 Scattering by Elliptic Cylinders -- 14.5 Scattering byWedges -- 14.6 Integral Equations for Perfectly Conducting Cylinders -- 14.7 Scattering by Penetrable Cylinders -- 14.8 Low-Frequency Scattering by Cylinders -- 14.9 Slots in a Planar Screen -- 14.10 More Slot Couplings -- 14.11 Termination of a Truncated Domain -- 14.12 Line Methods -- 15. CylindricalWaveguides -- 15.1 Field Expansions in a ClosedWaveguide -- 15.2 Determination of the Eigenvectors. | |
505 | 8 | _a15.3 Propagation in a Closed Waveguide -- 15.4 Waveguide Losses -- 15.5 Waveguide Networks -- 15.6 Aperture Excitation and Coupling -- 15.7 GuidedWaves in General Media -- 15.8 Orthogonality and Normalization -- 15.9 DielectricWaveguides -- 15.10 Other Examples ofWaveguides -- 16. Axisymmetric and Conical Boundaries -- 16.1 Field Expansions for Axisymmetric Geometries -- 16.2 Scattering by Bodies of Revolution: Integral Equations -- 16.3 Scattering by Bodies of Revolution: Finite Methods -- 16.4 Apertures in Axisymmetric Surfaces -- 16.5 The ConicalWaveguide -- 16.6 Singularities at the Tip of a Cone -- 16.7 Radiation and Scattering from Cones -- 17. Electrodynamics of Moving Bodies -- 17.1 Fields Generated by a Moving Charge -- 17.2 The Lorentz Transformation -- 17.3 Transformation of Fields and Currents -- 17.4 Radiation from Sources: the Doppler Effect -- 17.5 Constitutive Equations and Boundary Conditions -- 17.6 Material Bodies Moving Uniformly in Static Fields -- 17.7 Magnetic Levitation -- 17.8 Scatterers in Uniform Motion -- 17.9 Material Bodies in Nonuniform Motion -- 17.10 Rotating Bodies of Revolution -- 17.11 Motional Eddy Currents -- 17.12 Accelerated Frames of Reference -- 17.13 Rotating Comoving Frames -- Appendix 1. Vector Analysis in Three Dimensions -- Appendix 2. Vector Operators in Several Coordinate Systems -- Appendix 3. Vector Analysis on a Surface -- Appendix 4. Dyadic Analysis -- Appendix 5. Special Functions -- Appendix 6. Complex Integration -- Appendix 7. Transforms -- Appendix 8. Distributions -- Appendix 9. Some Eigenfunctions and Eigenvectors -- Appendix 10. Miscellaneous Data -- Bibliography -- General Texts on Electromagnetic Theory -- Texts that Discuss Particular Areas of Electromagnetic Theory -- General Mathematical Background -- Mathematical Techniques Specifically Applied to Electromagnetic Theory -- Acronyms and Symbols -- Author Index -- Subject Index. | |
506 | 1 | _aRestricted to subscribers or individual electronic text purchasers. | |
520 | _aProfessor Jean Van Bladel, an eminent researcher and educator in fundamental electromagnetic theory and its application in electrical engineering, has updated and expanded his definitive text and reference on electromagnetic fields to twice its original content. This new edition incorporates the latest methods, theory, formulations, and applications that relate to today's technologies. With an emphasis on basic principles and a focus on electromagnetic formulation and analysis, Electromagnetic Fields, Second Edition includes detailed discussions of electrostatic fields, potential theory, propagation in waveguides and unbounded space, scattering by obstacles, penetration through apertures, and field behavior at high and low frequencies. | ||
530 | _aAlso available in print. | ||
538 | _aMode of access: World Wide Web. | ||
588 | _aDescription based on PDF viewed 12/19/2015. | ||
650 | 0 |
_aElectromagnetic fields. _96919 |
|
655 | 0 |
_aElectronic books. _93294 |
|
695 | _aAcceleration | ||
695 | _aAerospace electronics | ||
695 | _aApertures | ||
695 | _aApproximation methods | ||
695 | _aArtificial neural networks | ||
695 | _aAzimuth | ||
695 | _aBibliographies | ||
695 | _aBooks | ||
695 | _aBoundary conditions | ||
695 | _aCavity resonators | ||
695 | _aClocks | ||
695 | _aCoaxial cables | ||
695 | _aCoils | ||
695 | _aConductivity | ||
695 | _aConductors | ||
695 | _aConvergence | ||
695 | _aConvolution | ||
695 | _aCouplings | ||
695 | _aCurrent | ||
695 | _aCurrent density | ||
695 | _aDielectrics | ||
695 | _aDifferential equations | ||
695 | _aDiffraction | ||
695 | _aEigenvalues and eigenfunctions | ||
695 | _aElectric fields | ||
695 | _aElectric potential | ||
695 | _aElectrodynamics | ||
695 | _aElectromagnetic fields | ||
695 | _aElectromagnetic waveguides | ||
695 | _aElectromagnetics | ||
695 | _aElectrostatics | ||
695 | _aEquations | ||
695 | _aErbium | ||
695 | _aFrequency measurement | ||
695 | _aFrequency modulation | ||
695 | _aFresnel reflection | ||
695 | _aGeometry | ||
695 | _aGreen products | ||
695 | _aGreen's function methods | ||
695 | _aIEEE Potentials | ||
695 | _aIndexes | ||
695 | _aIntegral equations | ||
695 | _aJacobian matrices | ||
695 | _aKernel | ||
695 | _aLaplace equations | ||
695 | _aLighting | ||
695 | _aLightning | ||
695 | _aLinear approximation | ||
695 | _aMagnetic domains | ||
695 | _aMagnetic resonance | ||
695 | _aMagnetic resonance imaging | ||
695 | _aMagnetic tunneling | ||
695 | _aMagnetostatics | ||
695 | _aMathematical model | ||
695 | _aMaxwell equations | ||
695 | _aMeasurement | ||
695 | _aMedia | ||
695 | _aMetals | ||
695 | _aNonhomogeneous media | ||
695 | _aOptical surface waves | ||
695 | _aOptical transmitters | ||
695 | _aOptical waveguides | ||
695 | _aPermittivity | ||
695 | _aPerpendicular magnetic anisotropy | ||
695 | _aPhase measurement | ||
695 | _aPhysical optics | ||
695 | _aPiecewise linear approximation | ||
695 | _aPoles and zeros | ||
695 | _aPolynomials | ||
695 | _aPower transmission lines | ||
695 | _aPropagation | ||
695 | _aQuantum mechanics | ||
695 | _aRadar antennas | ||
695 | _aReceiving antennas | ||
695 | _aResonant frequency | ||
695 | _aScattering | ||
695 | _aSearch problems | ||
695 | _aShape | ||
695 | _aStrips | ||
695 | _aSurface impedance | ||
695 | _aSurface waves | ||
695 | _aSymmetric matrices | ||
695 | _aSynchronization | ||
695 | _aTaylor series | ||
695 | _aTensile stress | ||
695 | _aTerminology | ||
695 | _aTime measurement | ||
695 | _aTrajectory | ||
695 | _aTransforms | ||
695 | _aTransient analysis | ||
695 | _aUltrafast electronics | ||
695 | _aVectors | ||
695 | _aWire | ||
695 | _aWriting | ||
710 | 2 |
_aIEEE Xplore (Online service), _edistributor. _926320 |
|
776 | 0 | 8 |
_iPrint version: _z9780471263883 |
830 | 0 |
_aIEEE press series on electromagnetic wave theory ; _v19 _97592 |
|
856 | 4 | 2 |
_3Abstract with links to resource _uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5236513 |
942 | _cEBK | ||
999 |
_c73738 _d73738 |