000 13511nam a2201705 i 4500
001 5236513
003 IEEE
005 20220712205603.0
006 m o d
007 cr |n|||||||||
008 071115t20152007njua ob 001 0 eng d
020 _a9780470124581
_qelectronic
020 _z0471263885
_qpaper
020 _z1601195117
_qebook
020 _z9780471263883
_qpaper
020 _z9781601195111
_qebook
020 _z047012458X
_qelectronic
024 7 _a10.1002/047012458X
_2doi
035 _a(CaBNVSL)mat05236513
035 _a(IDAMS)0b00006481094b36
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQC665.E4
_bB57 2007eb
082 0 4 _a530.141
_222
100 1 _aBladel, J. van
_q(Jean),
_d1922-
_eauthor.
_926319
245 1 0 _aElectromagnetic fields /
_cJean G. Van Bladel.
250 _a2nd ed.
264 1 _aHoboken, New Jersey :
_bWiley-Interscience,
_cc2007.
300 _a1 PDF (xiv, 1155 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aIEEE press series on electromagnetic wave theory ;
_v19
500 _aPrevious ed.: 1991.
504 _aIncludes bibliographical references and index.
505 0 _aPreface -- 1. Linear Analysis -- 1.1 Linear Spaces -- 1.2 Linear Transformations -- 1.3 The Inversion Problem -- 1.4 Green's Functions -- 1.5 Reciprocity -- 1.6 Green's Dyadics -- 1.7 Convergence of a Series -- 1.8 Eigenfunctions -- 1.9 Integral Operators -- 1.10 Eigenfunction Expansions -- 1.11 Discretization -- 1.12 Matrices -- 1.13 Solution of Matrix Equations: Stability -- 1.14 Finite Differences -- 1.15 Perturbations -- 2. Variational Techniques -- 2.1 Stationary functionals -- 2.2 A Suitable Functional for the String Problem -- 2.3 Functionals for the General L Transformation -- 2.4 Euler's Equations of Some Important Functionals -- 2.5 Discretization of the Trial Functions -- 2.6 Simple Finite Elements for Planar Problems -- 2.7 More Finite Elements -- 2.8 Direct Numerical Solution of Matrix Problems -- 2.9 Iterative Numerical Solution of Matrix Problems -- 3. Electrostatic Fields in the Presence of Dielectrics -- 3.1 Volume Charges in Vacuum -- 3.2 Green's Function for Infinite Space -- 3.3 Multipole Expansion -- 3.4 Potential Generated by a Single Layer of Charge -- 3.5 Potential Generated by a Double Layer of Charge -- 3.6 Potential Generated by a Linear Charge -- 3.7 Spherical Harmonics -- 3.8 Dielectric Materials -- 3.9 Cavity Fields -- 3.10 Dielectric Sphere in an External Field -- 3.11 Dielectric Spheroid in an Incident Field -- 3.12 Numerical Methods -- 4. Electrostatic Fields in the Presence of Conductors -- 4.1 Conductivity -- 4.2 Potential Outside a Charged Conductor -- 4.3 Capacitance Matrix -- 4.4 The Dirichlet Problem -- 4.5 The Neumann Problem -- 4.6 Numerical Solution of the Charge Density Problem -- 4.7 Conductor in an External Field -- 4.8 Conductors in the Presence of Dielectrics -- 4.9 Current Injection into a Conducting Volume -- 4.10 Contact Electrodes -- 4.11 Chains of Conductors -- 5. Special Geometries for the Electrostatic Field -- 5.1 Two-Dimensional Potentials in the Plane -- 5.2 Field Behavior at a ConductingWedge.
505 8 _a5.3 Field Behavior at a DielectricWedge -- 5.4 Separation of Variables in Two Dimensions -- 5.5 Two-Dimensional Integral Equations -- 5.6 Finite Methods in Two Dimensions -- 5.7 Infinite Computational Domains -- 5.8 More Two-Dimensional Techniques -- 5.9 Layered Media -- 5.10 Apertures -- 5.11 Axisymmetric Geometries -- 5.12 Conical Boundaries -- 6. Magnetostatic Fields -- 6.1 Magnetic Fields in Free Space: Vector Potential -- 6.2 Fields Generated by Linear Currents -- 6.3 Fields Generated by Surface Currents -- 6.4 Fields at Large Distances from the Sources -- 6.5 Scalar Potential in Vacuum -- 6.6 Magnetic Materials -- 6.7 Permanent Magnets -- 6.8 The Limit of Infinite Permeability -- 6.9 Two-Dimensional Fields in the Plane -- 6.10 Axisymmetric Geometries -- 6.11 Numerical Methods: Integral Equations -- 6.12 Numerical Methods: Finite Elements -- 6.13 Nonlinear Materials -- 6.14 Strong Magnetic Fields and Force-Free Currents -- 7. Radiation in Free Space -- 7.1 Maxwell's Equations -- 7.2 TheWave Equation -- 7.3 Potentials -- 7.4 Sinusoidal Time Dependence: Polarization -- 7.5 Partially Polarized Fields -- 7.6 The Radiation Condition -- 7.7 Time-Harmonic Potentials -- 7.8 Radiation Patterns -- 7.9 Green's Dyadics -- 7.10 Multipole Expansion -- 7.11 Spherical Harmonics -- 7.12 Equivalent Sources -- 7.13 LinearWire Antennas -- 7.14 CurvedWire Antennas: Radiation -- 7.15 Transient Sources -- 8. Radiation in a Material Medium -- 8.1 Constitutive Equations -- 8.2 PlaneWaves -- 8.3 Ray Methods -- 8.4 Beamlike Propagation -- 8.5 Green's Dyadics -- 8.6 Reciprocity -- 8.7 Equivalent Circuit of an Antenna -- 8.8 Effective Antenna Area -- 9. Plane Boundaries -- 9.1 PlaneWave Incident on a Plane Boundary -- 9.2 Propagation Through a Layered Medium -- 9.3 The Sommerfeld Dipole Problem -- 9.4 Multilayered Structures -- 9.5 Periodic Structures -- 9.6 Field Penetration Through Apertures -- 9.7 Edge Diffraction -- 10. Resonators.
505 8 _a10.1 Eigenvectors for an Enclosed Volume -- 10.2 Excitation of a Cavity -- 10.3 Determination of the Eigenvectors -- 10.4 Resonances -- 10.5 Open Resonators: Dielectric Resonances -- 10.6 Aperture Coupling -- 10.7 Green's Dyadics -- 11. Scattering: Generalities -- 11.1 The Scattering Matrix -- 11.2 Cross Sections -- 11.3 Scattering by a Sphere -- 11.4 Resonant Scattering -- 11.5 The Singularity Expansion Method -- 11.6 Impedance Boundary Conditions -- 11.7 Thin Layers -- 11.8 Characteristic Modes -- 12. Scattering: Numerical Methods -- 12.1 The Electric Field Integral Equation -- 12.2 The Magnetic Field Integral Equation -- 12.3 The T-Matrix -- 12.4 Numerical Procedures -- 12.5 Integral Equations for Penetrable Bodies -- 12.6 Absorbing Boundary Conditions -- 12.7 Finite Elements -- 12.8 Finite Differences in the Time Domain -- 13. High- and Low-Frequency Fields -- 13.1 Physical Optics -- 13.2 Geometrical Optics -- 13.3 Geometric Theory of Diffraction -- 13.4 Edge Currents and Equivalent Currents -- 13.5 Hybrid Methods -- 13.6 Low-Frequency Fields: The Rayleigh Region -- 13.7 Non-Conducting Scatterers at Low Frequencies -- 13.8 Perfectly Conducting Scatterers at Low Frequencies -- 13.9 Good Conductors -- 13.10 Stevenson's Method Applied to Good Conductors -- 13.11 Circuit Parameters -- 13.12 Transient Eddy Currents -- 14. Two-Dimensional Problems -- 14.1 E and H Waves -- 14.2 Scattering by Perfectly Conducting Cylinders -- 14.3 Scattering by Penetrable Circular Cylinders -- 14.4 Scattering by Elliptic Cylinders -- 14.5 Scattering byWedges -- 14.6 Integral Equations for Perfectly Conducting Cylinders -- 14.7 Scattering by Penetrable Cylinders -- 14.8 Low-Frequency Scattering by Cylinders -- 14.9 Slots in a Planar Screen -- 14.10 More Slot Couplings -- 14.11 Termination of a Truncated Domain -- 14.12 Line Methods -- 15. CylindricalWaveguides -- 15.1 Field Expansions in a ClosedWaveguide -- 15.2 Determination of the Eigenvectors.
505 8 _a15.3 Propagation in a Closed Waveguide -- 15.4 Waveguide Losses -- 15.5 Waveguide Networks -- 15.6 Aperture Excitation and Coupling -- 15.7 GuidedWaves in General Media -- 15.8 Orthogonality and Normalization -- 15.9 DielectricWaveguides -- 15.10 Other Examples ofWaveguides -- 16. Axisymmetric and Conical Boundaries -- 16.1 Field Expansions for Axisymmetric Geometries -- 16.2 Scattering by Bodies of Revolution: Integral Equations -- 16.3 Scattering by Bodies of Revolution: Finite Methods -- 16.4 Apertures in Axisymmetric Surfaces -- 16.5 The ConicalWaveguide -- 16.6 Singularities at the Tip of a Cone -- 16.7 Radiation and Scattering from Cones -- 17. Electrodynamics of Moving Bodies -- 17.1 Fields Generated by a Moving Charge -- 17.2 The Lorentz Transformation -- 17.3 Transformation of Fields and Currents -- 17.4 Radiation from Sources: the Doppler Effect -- 17.5 Constitutive Equations and Boundary Conditions -- 17.6 Material Bodies Moving Uniformly in Static Fields -- 17.7 Magnetic Levitation -- 17.8 Scatterers in Uniform Motion -- 17.9 Material Bodies in Nonuniform Motion -- 17.10 Rotating Bodies of Revolution -- 17.11 Motional Eddy Currents -- 17.12 Accelerated Frames of Reference -- 17.13 Rotating Comoving Frames -- Appendix 1. Vector Analysis in Three Dimensions -- Appendix 2. Vector Operators in Several Coordinate Systems -- Appendix 3. Vector Analysis on a Surface -- Appendix 4. Dyadic Analysis -- Appendix 5. Special Functions -- Appendix 6. Complex Integration -- Appendix 7. Transforms -- Appendix 8. Distributions -- Appendix 9. Some Eigenfunctions and Eigenvectors -- Appendix 10. Miscellaneous Data -- Bibliography -- General Texts on Electromagnetic Theory -- Texts that Discuss Particular Areas of Electromagnetic Theory -- General Mathematical Background -- Mathematical Techniques Specifically Applied to Electromagnetic Theory -- Acronyms and Symbols -- Author Index -- Subject Index.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _aProfessor Jean Van Bladel, an eminent researcher and educator in fundamental electromagnetic theory and its application in electrical engineering, has updated and expanded his definitive text and reference on electromagnetic fields to twice its original content. This new edition incorporates the latest methods, theory, formulations, and applications that relate to today's technologies. With an emphasis on basic principles and a focus on electromagnetic formulation and analysis, Electromagnetic Fields, Second Edition includes detailed discussions of electrostatic fields, potential theory, propagation in waveguides and unbounded space, scattering by obstacles, penetration through apertures, and field behavior at high and low frequencies.
530 _aAlso available in print.
538 _aMode of access: World Wide Web.
588 _aDescription based on PDF viewed 12/19/2015.
650 0 _aElectromagnetic fields.
_96919
655 0 _aElectronic books.
_93294
695 _aAcceleration
695 _aAerospace electronics
695 _aApertures
695 _aApproximation methods
695 _aArtificial neural networks
695 _aAzimuth
695 _aBibliographies
695 _aBooks
695 _aBoundary conditions
695 _aCavity resonators
695 _aClocks
695 _aCoaxial cables
695 _aCoils
695 _aConductivity
695 _aConductors
695 _aConvergence
695 _aConvolution
695 _aCouplings
695 _aCurrent
695 _aCurrent density
695 _aDielectrics
695 _aDifferential equations
695 _aDiffraction
695 _aEigenvalues and eigenfunctions
695 _aElectric fields
695 _aElectric potential
695 _aElectrodynamics
695 _aElectromagnetic fields
695 _aElectromagnetic waveguides
695 _aElectromagnetics
695 _aElectrostatics
695 _aEquations
695 _aErbium
695 _aFrequency measurement
695 _aFrequency modulation
695 _aFresnel reflection
695 _aGeometry
695 _aGreen products
695 _aGreen's function methods
695 _aIEEE Potentials
695 _aIndexes
695 _aIntegral equations
695 _aJacobian matrices
695 _aKernel
695 _aLaplace equations
695 _aLighting
695 _aLightning
695 _aLinear approximation
695 _aMagnetic domains
695 _aMagnetic resonance
695 _aMagnetic resonance imaging
695 _aMagnetic tunneling
695 _aMagnetostatics
695 _aMathematical model
695 _aMaxwell equations
695 _aMeasurement
695 _aMedia
695 _aMetals
695 _aNonhomogeneous media
695 _aOptical surface waves
695 _aOptical transmitters
695 _aOptical waveguides
695 _aPermittivity
695 _aPerpendicular magnetic anisotropy
695 _aPhase measurement
695 _aPhysical optics
695 _aPiecewise linear approximation
695 _aPoles and zeros
695 _aPolynomials
695 _aPower transmission lines
695 _aPropagation
695 _aQuantum mechanics
695 _aRadar antennas
695 _aReceiving antennas
695 _aResonant frequency
695 _aScattering
695 _aSearch problems
695 _aShape
695 _aStrips
695 _aSurface impedance
695 _aSurface waves
695 _aSymmetric matrices
695 _aSynchronization
695 _aTaylor series
695 _aTensile stress
695 _aTerminology
695 _aTime measurement
695 _aTrajectory
695 _aTransforms
695 _aTransient analysis
695 _aUltrafast electronics
695 _aVectors
695 _aWire
695 _aWriting
710 2 _aIEEE Xplore (Online service),
_edistributor.
_926320
776 0 8 _iPrint version:
_z9780471263883
830 0 _aIEEE press series on electromagnetic wave theory ;
_v19
_97592
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5236513
942 _cEBK
999 _c73738
_d73738