000 07826nam a2201189 i 4500
001 5361032
003 IEEE
005 20220712205729.0
006 m o d
007 cr |n|||||||||
008 091105t20152009njua ob 001 0 eng d
020 _a9780470466971
_qelectronic
020 _z9781118854150
_qprint
020 _z9780470298886
_qpaper
020 _z0470466979
_qelectronic
020 _z9780470466964
_qelectronic
020 _z0470466960
_qelectronic
024 7 _a10.1002/9780470466971
_2doi
035 _a(CaBNVSL)mat05361032
035 _a(IDAMS)0b0000648117884c
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK1005
_b.Z58 2009eb
082 0 4 _a621.31015196
_222
100 1 _aZhu, Jizhong,
_d1961-
_927340
245 1 0 _aOptimization of power system operation /
_cby Jizhong Zhu.
264 1 _aPiscataway, New Jersey :
_bWiley-IEEE,
_c2009.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2009]
300 _a1 PDF (xviii, 603 pages) :
_billustrations.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aIEEE Press series on power engineering ;
_v49
504 _aIncludes bibliographical references and index.
505 0 _aPreface -- 1 Introduction -- 1.1 Conventional Methods -- 1.2 Intelligent Search Methods -- 1.3 Application of Fuzzy Set Theory -- 2 Power Flow Analysis -- 2.1 Mathematical Model of Power Flow -- 2.2 Newton-Raphson Method -- 2.3 Gauss-Seidel Method -- 2.4 P-Q decoupling Method -- 2.5 DC Power Flow -- 3 Sensitivity Calculation -- 3.1 Introduction -- 3.2 Loss Sensitivity Calculation -- 3.3 Calculation of Constrained Shift Sensitivity Factors -- 3.4 Perturbation Method for Sensitivity Analysis -- 3.5 Voltage Sensitivity Analysis -- 3.6 Real-Time Application of Sensitivity Factors -- 3.7 Simulation Results -- 3.8 Conclusion -- 4 Classic Economic Dispatch -- 4.1 Introduction -- 4.2 Input-Output Characteristic of Generator Units -- 4.3 Thermal System Economic Dispatch Neglecting Network Losses -- 4.4 Calculation of Incremental Power Losses -- 4.5 Thermal System Economic Dispatch with Network Losses -- 4.6 Hydrothermal System Economic Dispatch -- 4.7 Economic Dispatch by Gradient Method -- 4.8 Classic Economic Dispatch by Genetic Algorithm -- 4.9 Classic Economic Dispatch by Hopfi eld Neural Network -- 5 Security-Constrained Economic Dispatch -- 5.1 Introduction -- 5.2 Linear Programming Method -- 5.3 Quadratic Programming Method -- 5.4 Network Flow Programming Method -- 5.5 Nonlinear Convex Network Flow Programming Method -- 5.6 Two-Stage Economic Dispatch Approach -- 5.7 Security-Constrained ED by Genetic Algorithms -- 6 Multiarea System Economic Dispatch -- 6.1 Introduction -- 6.2 Economy of Multiarea Interconnection -- 6.3 Wheeling -- 6.4 Multiarea Wheeling -- 6.5 MAED Solved by Nonlinear Convex Network Flow Programming -- 6.6 Nonlinear Optimization Neural Network Approach -- 6.7 Total Transfer Capability Computation in Multiareas -- 7 Unit Commitment -- 7.1 Introduction -- 7.2 Priority Method -- 7.3 Dynamic Programming Method -- 7.4 Lagrange Relaxation Method -- 7.5 Evolutionary Programming-Based Tabu Search Method -- 7.6 Particle Swarm Optimization for Unit Commitment.
505 8 _a7.7 Analytic Hierarchy Process -- 8 Optimal Power Flow -- 8.1 Introduction -- 8.2 Newton Method -- 8.3 Gradient Method -- 8.4 Linear Programming OPF -- 8.5 Modifi ed Interior Point OPF -- 8.6 OPF with Phase Shifter -- 8.7 Multiple-Objectives OPF -- 8.8 Particle Swarm Optimization for OPF -- 9 Steady-State Security Regions -- 9.1 Introduction -- 9.2 Security Corridors -- 9.3 Traditional Expansion Method -- 9.4 Enhanced Expansion Method -- 9.5 Fuzzy Set and Linear Programming -- 10 Reactive Power Optimization -- 10.1 Introduction -- 10.2 Classic Method for Reactive Power Dispatch -- 10.3 Linear Programming Method of VAR Optimization -- 10.4 Interior Point Method for VAR Optimization Problem -- 10.5 NLONN Approach -- 10.6 VAR Optimization by Evolutionary Algorithm -- 10.7 VAR Optimization by Particle Swarm Optimization Algorithm -- 10.8 Reactive Power Pricing Calculation -- 11 Optimal Load Shedding -- 11.1 Introduction -- 11.2 Conventional Load Shedding -- 11.3 Intelligent Load Shedding -- 11.4 Formulation of Optimal Load Shedding -- 11.5 Optimal Load Shedding with Network Constraints -- 11.6 Optimal Load Shedding without Network Constraints -- 11.7 Distributed Interruptible Load Shedding -- 11.8 Undervoltage Load Shedding -- 11.9 Congestion Management -- 12 Optimal Reconfi guration of Electrical Distribution Network -- 12.1 Introduction -- 12.2 Mathematical Model of DNRC -- 12.3 Heuristic Methods -- 12.4 Rule-Based Comprehensive Approach -- 12.5 Mixed-Integer Linear Programming Approach -- 12.6 Application of GA to DNRC -- 12.7 Multiobjective Evolution Programming to DNRC -- 12.8 Genetic Algorithm Based on Matroid Theory -- 13 Uncertainty Analysis in Power Systems -- 13.1 Introduction -- 13.2 Defi nition of Uncertainty -- 13.3 Uncertainty Load Analysis -- 13.4 Uncertainty Power Flow Analysis -- 13.5 Economic Dispatch with Uncertainties -- 13.6 Hydrothermal System Operation with Uncertainty -- 13.7 Unit Commitment with Uncertainties -- 13.8 VAR Optimization with Uncertain Reactive Load.
505 8 _a13.9 Probabilistic Optimal Power Flow -- 13.10 Comparison of Deterministic and Probabilistic Methods -- Author Biography -- Index.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/21/2015.
650 0 _aElectric power systems
_xMathematical models.
_914006
650 0 _aMathematical optimization.
_94112
655 0 _aElectronic books.
_93294
695 _aIndexes
695 _aInterconnected systems
695 _aJoining processes
695 _aLinear programming
695 _aLoad modeling
695 _aMarketing and sales
695 _aMathematical model
695 _aNewton method
695 _aNonlinear equations
695 _aOptimization
695 _aPlanning
695 _aPower markets
695 _aPower system stability
695 _aPower systems
695 _aPower transmission lines
695 _aProbabilistic logic
695 _aProbability density function
695 _aProduction
695 _aProgramming
695 _aPropagation losses
695 _aReactive power
695 _aResource management
695 _aSchedules
695 _aSecurity
695 _aSensitivity
695 _aShape
695 _aSteady-state
695 _aSwitches
695 _aTemperature
695 _aTime frequency analysis
695 _aTrajectory
695 _aTurbines
695 _aUncertainty
695 _aAdmittance
695 _aArtificial intelligence
695 _aArtificial neural networks
695 _aBiographies
695 _aBiological system modeling
695 _aBoilers
695 _aCompanies
695 _aCost function
695 _aDynamic programming
695 _aEconomics
695 _aElectricity
695 _aEllipsoids
695 _aEquations
695 _aFrequency control
695 _aFuels
695 _aGenerators
695 _aGenetic algorithms
695 _aHeuristic algorithms
695 _aIP networks
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_927341
710 2 _aJohn Wiley & Sons,
_epublisher.
_96902
776 0 8 _iPrint version:
_z9781118854150
830 0 _aIEEE Press series on power engineering ;
_v49
_97125
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5361032
942 _cEBK
999 _c74035
_d74035