000 | 06280nam a2200889 i 4500 | ||
---|---|---|---|
001 | 5732789 | ||
003 | IEEE | ||
005 | 20220712205756.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 151221s2011 njua ob 001 eng d | ||
020 |
_a9780470638286 _qebook |
||
020 |
_z0470638281 _qelectronic |
||
024 | 7 |
_a10.1002/9780470638286 _2doi |
|
035 | _a(CaBNVSL)mat05732789 | ||
035 | _a(IDAMS)0b000064814ebff9 | ||
040 |
_aCaBNVSL _beng _erda _cCaBNVSL _dCaBNVSL |
||
050 | 4 |
_aQA76.87 _b.C525 2010eb |
|
100 | 1 |
_aCirrincione, Giansalvo, _d1959- _927630 |
|
245 | 1 | 0 |
_aNeural-based orthogonal data fitting : _bthe EXIN neural networks / _cGiansalvo Cirrincione, Maurizio Cirrincione. |
264 | 1 |
_aHoboken, New Jersey : _bWiley, _cc2010. |
|
264 | 2 |
_a[Piscataqay, New Jersey] : _bIEEE Xplore, _c[2011] |
|
300 |
_a1 PDF (xviii, 243 pages, [12] pages) : _billustrations (some color). |
||
336 |
_atext _2rdacontent |
||
337 |
_aelectronic _2isbdmedia |
||
338 |
_aonline resource _2rdacarrier |
||
490 | 1 |
_aAdaptive and learning systems for signal processing, communications and control series ; _v38 |
|
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aForeword -- Preface -- 1 The Total Least Squares Problems -- 1.1 Introduction -- 1.2 Some TLS Applications -- 1.3 Preliminaries -- 1.4 Ordinary Least Squares Problems -- 1.5 Basic TLS Problem -- 1.6 Multidimensional TLS Problem -- 1.7 Nongeneric Unidimensional TLS Problem -- 1.8 Mixed OLS-TLS Problem -- 1.9 Algebraic Comparisons Between TLS and OLS -- 1.10 Statistical Properties and Validity -- 1.11 Basic Data Least Squares Problem -- 1.12 The Partial TLS Algorithm -- 1.13 Iterative Computation Methods -- 1.14 Rayleigh Quotient Minimization Non Neural and Neural Methods -- 2 The MCA EXIN Neuron -- 2.1 The Rayleigh Quotient -- 2.2 The Minor Component Analysis -- 2.3 The MCA EXIN Linear Neuron -- 2.4 The Rayleigh Quotient Gradient Flows -- 2.5 The MCA EXIN ODE Stability Analysis -- 2.6 Dynamics of the MCA Neurons -- 2.7 Fluctuations (Dynamic Stability) and Learning Rate -- 2.8 Numerical Considerations -- 2.9 TLS Hyperplane Fitting -- 2.10 Simulations for the MCA EXIN Neuron -- 2.11 Conclusions -- 3 Variants of the MCA EXIN Neuron -- 3.1 High-Order MCA Neurons -- 3.2 The Robust MCA EXIN Nonlinear Neuron (NMCA EXIN) -- 3.3 Extensions of the Neural MCA -- 4 Introduction to the TLS EXIN Neuron -- 4.1 From MCA EXIN to TLS EXIN -- 4.2 Deterministic Proof and Batch Mode -- 4.3 Acceleration Techniques -- 4.4 Comparison with TLS GAO -- 4.5 A TLS Application: Adaptive IIR Filtering -- 4.6 Numerical Considerations -- 4.7 The TLS Cost Landscape: Geometric Approach -- 4.8 First Considerations on the TLS Stability Analysis -- 5 Generalization of Linear Regression Problems -- 5.1 Introduction -- 5.2 The Generalized Total Least Squares (GeTLS EXIN) Approach -- 5.3 The GeTLS Stability Analysis -- 5.4 Neural Nongeneric Unidimensional TLS -- 5.5 Scheduling -- 5.6 The Accelerated MCA EXIN Neuron (MCA EXIN+) -- 5.7 Further Considerations -- 5.8 Simulations for the GeTLS EXIN Neuron -- 6 The GeMCA EXIN Theory -- 6.1 The GeMCA Approach -- 6.2 Analysis of Matrix K -- 6.3 Analysis of the Derivative of the Eigensystem of GeTLS EXIN. | |
505 | 8 | _a6.4 Rank One Analysis Around the TLS Solution -- 6.5 The GeMCA Spectra -- 6.6 Qualitative Analysis of the Critical Points of the GeMCA EXIN Error Function -- 6.7 Conclusion -- References -- Index. | |
506 | 1 | _aRestricted to subscribers or individual electronic text purchasers. | |
520 |
_a"Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Where most books on the subject are dedicated to PCA (principal component analysis) and consider MCA (minor component analysis) as simply a consequence, this is the fist book to start from the MCA problem and arrive at important conclusions about the PCA problem."-- _cProvided by publisher. |
||
530 | _aAlso available in print. | ||
538 | _aMode of access: World Wide Web | ||
588 | _aDescription based on PDF viewed 12/21/2015. | ||
650 | 0 |
_aNeural networks (Computer science) _93414 |
|
650 | 0 |
_aNumerical analysis. _94603 |
|
650 | 0 |
_aOrthogonalization methods. _927631 |
|
655 | 0 |
_aElectronic books. _93294 |
|
695 | _aAcceleration | ||
695 | _aAccuracy | ||
695 | _aAdaptive systems | ||
695 | _aApproximation methods | ||
695 | _aArtificial intelligence | ||
695 | _aBibliographies | ||
695 | _aBiological neural networks | ||
695 | _aBiomedical measurements | ||
695 | _aCorrelation | ||
695 | _aCost function | ||
695 | _aEigenvalues and eigenfunctions | ||
695 | _aEquations | ||
695 | _aGeMCA EXIN theory and generalized Rayleigh quotient | ||
695 | _aGeMCA spectra | ||
695 | _aHebbian theory | ||
695 | _aIndexes | ||
695 | _aLearning systems | ||
695 | _aLinear regression | ||
695 | _aLogistics | ||
695 | _aMathematical model | ||
695 | _aNeurons | ||
695 | _aNoise | ||
695 | _aOptical distortion | ||
695 | _aPrediction algorithms | ||
695 | _aPrincipal component analysis | ||
695 | _aRobustness | ||
695 | _aSignal processing | ||
695 | _aSignal processing algorithms | ||
695 | _aTraining | ||
695 | _aVectors | ||
695 | _aanalysis of derivative of eigensystem of GeTLS EXIN | ||
700 | 1 |
_aCirrincione, Maurizio, _d1961- _927632 |
|
710 | 2 |
_aIEEE Xplore (Online Service), _edistributor. _927633 |
|
710 | 2 |
_aJohn Wiley & Sons, _epublisher. _96902 |
|
830 | 0 |
_aAdaptive and learning systems for signal processing, communication, and control ; _v38 _927634 |
|
856 | 4 | 2 |
_3Abstract with links to resource _uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5732789 |
942 | _cEBK | ||
999 |
_c74124 _d74124 |