000 06280nam a2200889 i 4500
001 5732789
003 IEEE
005 20220712205756.0
006 m o d
007 cr |n|||||||||
008 151221s2011 njua ob 001 eng d
020 _a9780470638286
_qebook
020 _z0470638281
_qelectronic
024 7 _a10.1002/9780470638286
_2doi
035 _a(CaBNVSL)mat05732789
035 _a(IDAMS)0b000064814ebff9
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aQA76.87
_b.C525 2010eb
100 1 _aCirrincione, Giansalvo,
_d1959-
_927630
245 1 0 _aNeural-based orthogonal data fitting :
_bthe EXIN neural networks /
_cGiansalvo Cirrincione, Maurizio Cirrincione.
264 1 _aHoboken, New Jersey :
_bWiley,
_cc2010.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2011]
300 _a1 PDF (xviii, 243 pages, [12] pages) :
_billustrations (some color).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aAdaptive and learning systems for signal processing, communications and control series ;
_v38
504 _aIncludes bibliographical references and index.
505 0 _aForeword -- Preface -- 1 The Total Least Squares Problems -- 1.1 Introduction -- 1.2 Some TLS Applications -- 1.3 Preliminaries -- 1.4 Ordinary Least Squares Problems -- 1.5 Basic TLS Problem -- 1.6 Multidimensional TLS Problem -- 1.7 Nongeneric Unidimensional TLS Problem -- 1.8 Mixed OLS-TLS Problem -- 1.9 Algebraic Comparisons Between TLS and OLS -- 1.10 Statistical Properties and Validity -- 1.11 Basic Data Least Squares Problem -- 1.12 The Partial TLS Algorithm -- 1.13 Iterative Computation Methods -- 1.14 Rayleigh Quotient Minimization Non Neural and Neural Methods -- 2 The MCA EXIN Neuron -- 2.1 The Rayleigh Quotient -- 2.2 The Minor Component Analysis -- 2.3 The MCA EXIN Linear Neuron -- 2.4 The Rayleigh Quotient Gradient Flows -- 2.5 The MCA EXIN ODE Stability Analysis -- 2.6 Dynamics of the MCA Neurons -- 2.7 Fluctuations (Dynamic Stability) and Learning Rate -- 2.8 Numerical Considerations -- 2.9 TLS Hyperplane Fitting -- 2.10 Simulations for the MCA EXIN Neuron -- 2.11 Conclusions -- 3 Variants of the MCA EXIN Neuron -- 3.1 High-Order MCA Neurons -- 3.2 The Robust MCA EXIN Nonlinear Neuron (NMCA EXIN) -- 3.3 Extensions of the Neural MCA -- 4 Introduction to the TLS EXIN Neuron -- 4.1 From MCA EXIN to TLS EXIN -- 4.2 Deterministic Proof and Batch Mode -- 4.3 Acceleration Techniques -- 4.4 Comparison with TLS GAO -- 4.5 A TLS Application: Adaptive IIR Filtering -- 4.6 Numerical Considerations -- 4.7 The TLS Cost Landscape: Geometric Approach -- 4.8 First Considerations on the TLS Stability Analysis -- 5 Generalization of Linear Regression Problems -- 5.1 Introduction -- 5.2 The Generalized Total Least Squares (GeTLS EXIN) Approach -- 5.3 The GeTLS Stability Analysis -- 5.4 Neural Nongeneric Unidimensional TLS -- 5.5 Scheduling -- 5.6 The Accelerated MCA EXIN Neuron (MCA EXIN+) -- 5.7 Further Considerations -- 5.8 Simulations for the GeTLS EXIN Neuron -- 6 The GeMCA EXIN Theory -- 6.1 The GeMCA Approach -- 6.2 Analysis of Matrix K -- 6.3 Analysis of the Derivative of the Eigensystem of GeTLS EXIN.
505 8 _a6.4 Rank One Analysis Around the TLS Solution -- 6.5 The GeMCA Spectra -- 6.6 Qualitative Analysis of the Critical Points of the GeMCA EXIN Error Function -- 6.7 Conclusion -- References -- Index.
506 1 _aRestricted to subscribers or individual electronic text purchasers.
520 _a"Written by three leaders in the field of neural based algorithms, Neural Based Orthogonal Data Fitting proposes several neural networks, all endowed with a complete theory which not only explains their behavior, but also compares them with the existing neural and traditional algorithms. The algorithms are studied from different points of view, including: as a differential geometry problem, as a dynamic problem, as a stochastic problem, and as a numerical problem. All algorithms have also been analyzed on real time problems (large dimensional data matrices) and have shown accurate solutions. Where most books on the subject are dedicated to PCA (principal component analysis) and consider MCA (minor component analysis) as simply a consequence, this is the fist book to start from the MCA problem and arrive at important conclusions about the PCA problem."--
_cProvided by publisher.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 12/21/2015.
650 0 _aNeural networks (Computer science)
_93414
650 0 _aNumerical analysis.
_94603
650 0 _aOrthogonalization methods.
_927631
655 0 _aElectronic books.
_93294
695 _aAcceleration
695 _aAccuracy
695 _aAdaptive systems
695 _aApproximation methods
695 _aArtificial intelligence
695 _aBibliographies
695 _aBiological neural networks
695 _aBiomedical measurements
695 _aCorrelation
695 _aCost function
695 _aEigenvalues and eigenfunctions
695 _aEquations
695 _aGeMCA EXIN theory and generalized Rayleigh quotient
695 _aGeMCA spectra
695 _aHebbian theory
695 _aIndexes
695 _aLearning systems
695 _aLinear regression
695 _aLogistics
695 _aMathematical model
695 _aNeurons
695 _aNoise
695 _aOptical distortion
695 _aPrediction algorithms
695 _aPrincipal component analysis
695 _aRobustness
695 _aSignal processing
695 _aSignal processing algorithms
695 _aTraining
695 _aVectors
695 _aanalysis of derivative of eigensystem of GeTLS EXIN
700 1 _aCirrincione, Maurizio,
_d1961-
_927632
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_927633
710 2 _aJohn Wiley & Sons,
_epublisher.
_96902
830 0 _aAdaptive and learning systems for signal processing, communication, and control ;
_v38
_927634
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=5732789
942 _cEBK
999 _c74124
_d74124