000 | 10386nam a2201105 i 4500 | ||
---|---|---|---|
001 | 7953905 | ||
003 | IEEE | ||
005 | 20220712205948.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 170714s2017 mau ob 001 eng d | ||
010 | _z 2016026830 (print) | ||
020 |
_a9781119078388 _qelectronic |
||
020 |
_z9781118436646 _qcloth |
||
024 | 7 |
_a10.1002/9781119078388 _2doi |
|
035 | _a(CaBNVSL)mat07953905 | ||
035 | _a(IDAMS)0b00006485dab255 | ||
040 |
_aCaBNVSL _beng _erda _cCaBNVSL _dCaBNVSL |
||
050 | 4 |
_aTK3001 _b.R68 2016eb |
|
082 | 0 | 0 |
_a621.301/51 _223 |
100 | 1 |
_aRuehli, A. E. _q(Albert E.), _d1937- _eauthor. _929094 |
|
245 | 1 | 4 |
_aThe partial element equivalent circuit method for electro-magnetic and circuit problems : _ba paradigm for EM modeling / _cAlbert E. Ruehli, Giulio Antonini, Lijun Jiang. |
264 | 1 |
_aHoboken, New Jersey : _bJohn Wiley & Sons, _c2016. |
|
264 | 2 |
_a[Piscataqay, New Jersey] : _bIEEE Xplore, _c[2017] |
|
300 | _a1 PDF (464 pages). | ||
336 |
_atext _2rdacontent |
||
337 |
_aelectronic _2isbdmedia |
||
338 |
_aonline resource _2rdacarrier |
||
490 | 1 | _aWiley - IEEE | |
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _a-- DEDICATION xv -- PREFACE xvii -- ACKNOWLEDGEMENTS xxi -- ACRONYMS xxv -- 1 Introduction 1 -- References, 6 -- 2 Circuit Analysis for PEEC Methods 9 -- 2.1 Circuit Analysis Techniques, 9 -- 2.2 Overall Electromagnetic and Circuit Solver Structure, 9 -- 2.3 Circuit Laws, 11 -- 2.4 Frequency and Time Domain Analyses, 13 -- 2.5 Frequency Domain Analysis Formulation, 14 -- 2.6 Time Domain Analysis Formulations, 17 -- 2.7 General Modified Nodal Analysis (MNA), 22 -- 2.8 Including Frequency Dependent Models in Time Domain Solution, 28 -- 2.9 Including Frequency Domain Models in Circuit Solution, 31 -- 2.10 Recursive Convolution Solution, 39 -- 2.11 Circuit Models with Delays or Retardation, 41 -- Problems, 43 -- References, 44 -- 3 Maxwell's Equations 47 -- 3.1 Maxwell's Equations for PEEC Solutions, 47 -- 3.2 Auxiliary Potentials, 52 -- 3.3 Wave Equations and Their Solutions, 54 -- 3.4 Green's Function, 58 -- 3.5 Equivalence Principles, 60 -- 3.6 Numerical Solution of Integral Equations, 63 -- Problems, 65 -- References, 66 -- 4 Capacitance Computations 67 -- 4.1 Multiconductor Capacitance Concepts, 68 -- 4.2 Capacitance Models, 69 -- 4.3 Solution Techniques for Capacitance Problems, 74 -- 4.4 Meshing Related Accuracy Problems for PEEC Model, 79 -- 4.5 Representation of Capacitive Currents for PEEC Models, 82 -- Problems, 85 -- References, 86 -- 5 Inductance Computations 89 -- 5.1 Loop Inductance Computations, 90 -- 5.2 Inductance Computation Using a Solution or a Circuit Solver, 95 -- 5.3 Flux Loops for Partial Inductance, 95 -- 5.4 Inductances of Incomplete Structures, 96 -- 5.5 Computation of Partial Inductances, 99 -- 5.6 General Inductance Computations Using Partial Inductances and Open Loop Inductance, 107 -- 5.7 Difference Cell Pair Inductance Models, 109 -- 5.8 Partial Inductances with Frequency Domain Retardation, 119 -- Retardation, 123 -- Problems, 125 -- References, 131 -- 6 Building PEEC Models 133 -- 6.1 Resistive Circuit Elements for Manhattan-Type Geometries, 134. | |
505 | 8 | _a6.2 Inductance / Resistance (Lp,R)PEEC Models, 136 -- 6.3 General (Lp,p,R)PEEC Model Development, 138 -- 6.4 Complete PEEC Model with Input and Output Connections, 148 -- 6.5 Time Domain Representation, 154 -- Problems, 154 -- References, 155 -- 7 Nonorthogonal PEEC Models 157 -- 7.1 Representation of Nonorthogonal Shapes, 158 -- 7.2 Specification of Nonorthogonal Partial Elements, 163 -- 7.3 Evaluation of Partial Elements for Nonorthogonal PEEC Circuits, 169 -- Problems, 181 -- References, 182 -- 8 Geometrical Description and Meshing 185 -- 8.1 General Aspects of PEEC Model Meshing Requirements, 186 -- 8.2 Outline of Some Meshing Techniques Available Today, 187 -- 8.3 SPICE Type Geometry Description, 194 -- 8.4 Detailed Properties of Meshing Algorithms, 196 -- 8.5 Automatic Generation of Geometrical Objects, 202 -- 8.6 Meshing of Some Three Dimensional Pre-determined Shapes, 205 -- 8.7 Approximations with Simplified Meshes, 207 -- 8.8 Mesh Generation Codes, 208 -- Problems, 209 -- References, 210 -- 9 Skin Effect Modeling 213 -- 9.1 Transmission Line Based Models, 214 -- 9.2 One Dimensional Current Flow Techniques, 215 -- 9.3 3D Volume Filament (VFI) Skin-Effect Model, 227 -- 9.4 Comparisons of Different Skin-Effect Models, 238 -- Problems, 244 -- References, 246 -- 10 PEEC Models for Dielectrics 249 -- 10.1 Electrical Models for Dielectric Materials, 249 -- 10.2 Circuit Oriented Models for Dispersive Dielectrics, 254 -- 10.3 Multi-Pole Debye Model, 257 -- 10.4 Including Dielectric Models in PEEC Solutions, 260 -- 10.5 Example for Impact of Dielectric Properties in the Time Domain, 276 -- Problems, 281 -- References, 281 -- 11 PEEC Models for Magnetic Material 285 -- 11.1 Inclusion of Problems with Magnetic Materials, 285 -- 11.2 Model for Magnetic Bodies by Using a Magnetic Scalar Potential and Magnetic Charge Formulation, 292 -- 11.3 PEEC Formulation Including Magnetic Bodies, 295 -- 11.4 Surface Models for Magnetic and Dielectric Material Solutions in PEEC, 300. | |
505 | 8 | _aProblems, 307 -- References, 308 -- 12 Incident and Radiated Field Models 309 -- 12.1 External Incident Field Applied to PEEC Model, 310 -- 12.2 Far-Field Radiation Models by Using Sensors, 312 -- 12.3 Direct Far-Field Radiation Computation, 318 -- Problems, 322 -- References, 322 -- 13 Stability and Passivity of PEEC Models 325 -- 13.1 Fundamental Stability and Passivity Concepts, 327 -- 13.2 Analysis of Properties of PEEC Circuits, 332 -- 13.3 Observability and Controllability of PEEC Circuits, 334 -- 13.4 Passivity Assessment of Solution, 337 -- 13.5 Solver Based Stability and Passivity Enhancement Techniques, 342 -- 13.6 Time Domain Solver Issues for Stability and Passivity, 359 -- Acknowledgment, 364 -- Problems, 364 -- References, 365 -- A Table of Units 369 -- A.1 Collection of Variables and Constants for Different Applications, 369 -- B Modified Nodal Analysis Stamps 373 -- B.1 Modified Nodal Analysis Matrix Stamps, 373 -- B.2 Controlled Source Stamps, 380 -- References, 382 -- C Computation of Partial Inductances 383 -- C.1 Partial Inductance Formulas for Orthogonal Geometries, 385 -- C.2 Partial inductance formulas for nonorthogonal geometries, 398 -- References, 407 -- D Computation of Partial Coefficients of Potential 409 -- D.1 Partial Potential Coefficients for Orthogonal Geometries, 410 -- D.2 Partial Potential Coefficient Formulas for Nonorthogonal Geometries, 418 -- References, 421 -- E Auxiliary Techniques for Partial Element Computations 423 -- E.1 Multi-function Partial Element Integration, 423 -- Subdivisions for Nonself-Partial Elements, 428 -- References, 429 -- INDEX 431. | |
506 | _aRestricted to subscribers or individual electronic text purchasers. | ||
520 | _aThis book provides intuitive solutions to electromagnetic problems by using the Partial Eelement Eequivalent Ccircuit (PEEC) method. This book begins with an introduction to circuit analysis techniques, laws, and frequency and time domain analyses. The authors also treat Maxwell's equations, capacitance computations, and inductance computations through the lens of the PEEC method. Next, readers learn to build PEEC models in various forms: equivalent circuit models, non orthogonal PEEC models, skin-effect models, PEEC models for dielectrics, incident and radiate field models, and scattering PEEC models. The book concludes by considering issues like such as stability and passivity, and includes five appendices some with formulas for partial elements. . Leads readers to the solution of a multitude of practical problems in the areas of signal and power integrity and electromagnetic interference. Contains fundamentals, applications, and examples of the PEEC method. Includes detailed mathematical derivations Circuit-Oriented Electromagnetic Modeling Using the PEEC Techniques is a reference for students, researchers, and developers who work on the physical layer modeling of IC interconnects and packaging, PCBs, and high-speed links. | ||
530 | _aAlso available in print. | ||
538 | _aMode of access: World Wide Web | ||
588 | _aDescription based on PDF viewed 07/14/2017. | ||
650 | 0 |
_aElectric circuits _xMathematical models. _96378 |
|
650 | 0 |
_aElectromagnetism _xMathematical models. _96379 |
|
655 | 0 |
_aElectronic books. _93294 |
|
695 | _aBars | ||
695 | _aCapacitance | ||
695 | _aCircuit analysis | ||
695 | _aCircuit stability | ||
695 | _aComputational modeling | ||
695 | _aConductors | ||
695 | _aCouplings | ||
695 | _aCurrent density | ||
695 | _aDielectric losses | ||
695 | _aDielectric materials | ||
695 | _aDielectrics | ||
695 | _aElectric fields | ||
695 | _aElectric potential | ||
695 | _aElectromagnetics | ||
695 | _aEquivalent circuits | ||
695 | _aFinite element analysis | ||
695 | _aFrequency-domain analysis | ||
695 | _aGeometry | ||
695 | _aIEEE Sections | ||
695 | _aImpedance | ||
695 | _aInductance | ||
695 | _aIntegral equations | ||
695 | _aIntegrated circuit modeling | ||
695 | _aMagnetic circuits | ||
695 | _aMagnetic cores | ||
695 | _aMagnetic domains | ||
695 | _aMagnetic flux | ||
695 | _aMagnetic materials | ||
695 | _aMathematical model | ||
695 | _aMaxwell equations | ||
695 | _aMethod of moments | ||
695 | _aNumerical stability | ||
695 | _aPermittivity | ||
695 | _aRLC circuits | ||
695 | _aResistance | ||
695 | _aResistors | ||
695 | _aSPICE | ||
695 | _aScattering | ||
695 | _aSensors | ||
695 | _aShape | ||
695 | _aSkin effect | ||
695 | _aSolid modeling | ||
695 | _aStability analysis | ||
695 | _aSurface impedance | ||
695 | _aTime-domain analysis | ||
695 | _aVoltage control | ||
700 | 1 |
_aAntonini, Giulio, _d1969- _eauthor. _929095 |
|
700 | 1 |
_aJiang, Lijun _d1970- _eauthor. _929096 |
|
710 | 2 |
_aIEEE Xplore (Online Service), _edistributor. _929097 |
|
710 | 2 |
_aWiley, _epublisher. _929098 |
|
830 | 0 |
_aWiley - IEEE _97628 |
|
856 | 4 | 2 |
_3Abstract with links to resource _uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=7953905 |
942 | _cEBK | ||
999 |
_c74507 _d74507 |