000 10386nam a2201105 i 4500
001 7953905
003 IEEE
005 20220712205948.0
006 m o d
007 cr |n|||||||||
008 170714s2017 mau ob 001 eng d
010 _z 2016026830 (print)
020 _a9781119078388
_qelectronic
020 _z9781118436646
_qcloth
024 7 _a10.1002/9781119078388
_2doi
035 _a(CaBNVSL)mat07953905
035 _a(IDAMS)0b00006485dab255
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTK3001
_b.R68 2016eb
082 0 0 _a621.301/51
_223
100 1 _aRuehli, A. E.
_q(Albert E.),
_d1937-
_eauthor.
_929094
245 1 4 _aThe partial element equivalent circuit method for electro-magnetic and circuit problems :
_ba paradigm for EM modeling /
_cAlbert E. Ruehli, Giulio Antonini, Lijun Jiang.
264 1 _aHoboken, New Jersey :
_bJohn Wiley & Sons,
_c2016.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2017]
300 _a1 PDF (464 pages).
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
490 1 _aWiley - IEEE
504 _aIncludes bibliographical references and index.
505 0 _a-- DEDICATION xv -- PREFACE xvii -- ACKNOWLEDGEMENTS xxi -- ACRONYMS xxv -- 1 Introduction 1 -- References, 6 -- 2 Circuit Analysis for PEEC Methods 9 -- 2.1 Circuit Analysis Techniques, 9 -- 2.2 Overall Electromagnetic and Circuit Solver Structure, 9 -- 2.3 Circuit Laws, 11 -- 2.4 Frequency and Time Domain Analyses, 13 -- 2.5 Frequency Domain Analysis Formulation, 14 -- 2.6 Time Domain Analysis Formulations, 17 -- 2.7 General Modified Nodal Analysis (MNA), 22 -- 2.8 Including Frequency Dependent Models in Time Domain Solution, 28 -- 2.9 Including Frequency Domain Models in Circuit Solution, 31 -- 2.10 Recursive Convolution Solution, 39 -- 2.11 Circuit Models with Delays or Retardation, 41 -- Problems, 43 -- References, 44 -- 3 Maxwell's Equations 47 -- 3.1 Maxwell's Equations for PEEC Solutions, 47 -- 3.2 Auxiliary Potentials, 52 -- 3.3 Wave Equations and Their Solutions, 54 -- 3.4 Green's Function, 58 -- 3.5 Equivalence Principles, 60 -- 3.6 Numerical Solution of Integral Equations, 63 -- Problems, 65 -- References, 66 -- 4 Capacitance Computations 67 -- 4.1 Multiconductor Capacitance Concepts, 68 -- 4.2 Capacitance Models, 69 -- 4.3 Solution Techniques for Capacitance Problems, 74 -- 4.4 Meshing Related Accuracy Problems for PEEC Model, 79 -- 4.5 Representation of Capacitive Currents for PEEC Models, 82 -- Problems, 85 -- References, 86 -- 5 Inductance Computations 89 -- 5.1 Loop Inductance Computations, 90 -- 5.2 Inductance Computation Using a Solution or a Circuit Solver, 95 -- 5.3 Flux Loops for Partial Inductance, 95 -- 5.4 Inductances of Incomplete Structures, 96 -- 5.5 Computation of Partial Inductances, 99 -- 5.6 General Inductance Computations Using Partial Inductances and Open Loop Inductance, 107 -- 5.7 Difference Cell Pair Inductance Models, 109 -- 5.8 Partial Inductances with Frequency Domain Retardation, 119 -- Retardation, 123 -- Problems, 125 -- References, 131 -- 6 Building PEEC Models 133 -- 6.1 Resistive Circuit Elements for Manhattan-Type Geometries, 134.
505 8 _a6.2 Inductance / Resistance (Lp,R)PEEC Models, 136 -- 6.3 General (Lp,p,R)PEEC Model Development, 138 -- 6.4 Complete PEEC Model with Input and Output Connections, 148 -- 6.5 Time Domain Representation, 154 -- Problems, 154 -- References, 155 -- 7 Nonorthogonal PEEC Models 157 -- 7.1 Representation of Nonorthogonal Shapes, 158 -- 7.2 Specification of Nonorthogonal Partial Elements, 163 -- 7.3 Evaluation of Partial Elements for Nonorthogonal PEEC Circuits, 169 -- Problems, 181 -- References, 182 -- 8 Geometrical Description and Meshing 185 -- 8.1 General Aspects of PEEC Model Meshing Requirements, 186 -- 8.2 Outline of Some Meshing Techniques Available Today, 187 -- 8.3 SPICE Type Geometry Description, 194 -- 8.4 Detailed Properties of Meshing Algorithms, 196 -- 8.5 Automatic Generation of Geometrical Objects, 202 -- 8.6 Meshing of Some Three Dimensional Pre-determined Shapes, 205 -- 8.7 Approximations with Simplified Meshes, 207 -- 8.8 Mesh Generation Codes, 208 -- Problems, 209 -- References, 210 -- 9 Skin Effect Modeling 213 -- 9.1 Transmission Line Based Models, 214 -- 9.2 One Dimensional Current Flow Techniques, 215 -- 9.3 3D Volume Filament (VFI) Skin-Effect Model, 227 -- 9.4 Comparisons of Different Skin-Effect Models, 238 -- Problems, 244 -- References, 246 -- 10 PEEC Models for Dielectrics 249 -- 10.1 Electrical Models for Dielectric Materials, 249 -- 10.2 Circuit Oriented Models for Dispersive Dielectrics, 254 -- 10.3 Multi-Pole Debye Model, 257 -- 10.4 Including Dielectric Models in PEEC Solutions, 260 -- 10.5 Example for Impact of Dielectric Properties in the Time Domain, 276 -- Problems, 281 -- References, 281 -- 11 PEEC Models for Magnetic Material 285 -- 11.1 Inclusion of Problems with Magnetic Materials, 285 -- 11.2 Model for Magnetic Bodies by Using a Magnetic Scalar Potential and Magnetic Charge Formulation, 292 -- 11.3 PEEC Formulation Including Magnetic Bodies, 295 -- 11.4 Surface Models for Magnetic and Dielectric Material Solutions in PEEC, 300.
505 8 _aProblems, 307 -- References, 308 -- 12 Incident and Radiated Field Models 309 -- 12.1 External Incident Field Applied to PEEC Model, 310 -- 12.2 Far-Field Radiation Models by Using Sensors, 312 -- 12.3 Direct Far-Field Radiation Computation, 318 -- Problems, 322 -- References, 322 -- 13 Stability and Passivity of PEEC Models 325 -- 13.1 Fundamental Stability and Passivity Concepts, 327 -- 13.2 Analysis of Properties of PEEC Circuits, 332 -- 13.3 Observability and Controllability of PEEC Circuits, 334 -- 13.4 Passivity Assessment of Solution, 337 -- 13.5 Solver Based Stability and Passivity Enhancement Techniques, 342 -- 13.6 Time Domain Solver Issues for Stability and Passivity, 359 -- Acknowledgment, 364 -- Problems, 364 -- References, 365 -- A Table of Units 369 -- A.1 Collection of Variables and Constants for Different Applications, 369 -- B Modified Nodal Analysis Stamps 373 -- B.1 Modified Nodal Analysis Matrix Stamps, 373 -- B.2 Controlled Source Stamps, 380 -- References, 382 -- C Computation of Partial Inductances 383 -- C.1 Partial Inductance Formulas for Orthogonal Geometries, 385 -- C.2 Partial inductance formulas for nonorthogonal geometries, 398 -- References, 407 -- D Computation of Partial Coefficients of Potential 409 -- D.1 Partial Potential Coefficients for Orthogonal Geometries, 410 -- D.2 Partial Potential Coefficient Formulas for Nonorthogonal Geometries, 418 -- References, 421 -- E Auxiliary Techniques for Partial Element Computations 423 -- E.1 Multi-function Partial Element Integration, 423 -- Subdivisions for Nonself-Partial Elements, 428 -- References, 429 -- INDEX 431.
506 _aRestricted to subscribers or individual electronic text purchasers.
520 _aThis book provides intuitive solutions to electromagnetic problems by using the Partial Eelement Eequivalent Ccircuit (PEEC) method. This book begins with an introduction to circuit analysis techniques, laws, and frequency and time domain analyses. The authors also treat Maxwell's equations, capacitance computations, and inductance computations through the lens of the PEEC method. Next, readers learn to build PEEC models in various forms: equivalent circuit models, non orthogonal PEEC models, skin-effect models, PEEC models for dielectrics, incident and radiate field models, and scattering PEEC models. The book concludes by considering issues like such as stability and passivity, and includes five appendices some with formulas for partial elements. . Leads readers to the solution of a multitude of practical problems in the areas of signal and power integrity and electromagnetic interference. Contains fundamentals, applications, and examples of the PEEC method. Includes detailed mathematical derivations Circuit-Oriented Electromagnetic Modeling Using the PEEC Techniques is a reference for students, researchers, and developers who work on the physical layer modeling of IC interconnects and packaging, PCBs, and high-speed links.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 07/14/2017.
650 0 _aElectric circuits
_xMathematical models.
_96378
650 0 _aElectromagnetism
_xMathematical models.
_96379
655 0 _aElectronic books.
_93294
695 _aBars
695 _aCapacitance
695 _aCircuit analysis
695 _aCircuit stability
695 _aComputational modeling
695 _aConductors
695 _aCouplings
695 _aCurrent density
695 _aDielectric losses
695 _aDielectric materials
695 _aDielectrics
695 _aElectric fields
695 _aElectric potential
695 _aElectromagnetics
695 _aEquivalent circuits
695 _aFinite element analysis
695 _aFrequency-domain analysis
695 _aGeometry
695 _aIEEE Sections
695 _aImpedance
695 _aInductance
695 _aIntegral equations
695 _aIntegrated circuit modeling
695 _aMagnetic circuits
695 _aMagnetic cores
695 _aMagnetic domains
695 _aMagnetic flux
695 _aMagnetic materials
695 _aMathematical model
695 _aMaxwell equations
695 _aMethod of moments
695 _aNumerical stability
695 _aPermittivity
695 _aRLC circuits
695 _aResistance
695 _aResistors
695 _aSPICE
695 _aScattering
695 _aSensors
695 _aShape
695 _aSkin effect
695 _aSolid modeling
695 _aStability analysis
695 _aSurface impedance
695 _aTime-domain analysis
695 _aVoltage control
700 1 _aAntonini, Giulio,
_d1969-
_eauthor.
_929095
700 1 _aJiang, Lijun
_d1970-
_eauthor.
_929096
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_929097
710 2 _aWiley,
_epublisher.
_929098
830 0 _aWiley - IEEE
_97628
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=7953905
942 _cEBK
999 _c74507
_d74507