000 15816nam a2200625 i 4500
001 8039557
003 IEEE
005 20220712211648.0
006 m o d
007 cr |n|||||||||
008 171024s2008 mauab ob 001 eng d
010 _z 2011037210 (print)
015 _zGBB1B3259 (print)
016 _z015899458 (print)
020 _a9781119958352
_qelectronic
020 _z9781119994350
_qhardback
020 _z1119994357
_qhardback
024 7 _a10.1002/9781119958352
_2doi
035 _a(CaBNVSL)mat08039557
035 _a(IDAMS)0b00006485f0d45c
040 _aCaBNVSL
_beng
_erda
_cCaBNVSL
_dCaBNVSL
050 4 _aTH6012
_b.H47 2012eb
082 0 0 _a681/.2
_223
100 1 _aHersent, Olivier,
_eauthor.
_929838
245 1 4 _aThe internet of things :
_bkey applications and protocols /
_cOlivier Hersent, David Boswarthick, Omar Elloumi.
264 1 _aChichester, West Sussex :
_bWiley,
_c2012.
264 2 _a[Piscataqay, New Jersey] :
_bIEEE Xplore,
_c[2011]
300 _a1 PDF (xxv, 344 pages) :
_billustrations, maps.
336 _atext
_2rdacontent
337 _aelectronic
_2isbdmedia
338 _aonline resource
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 _aList of Acronyms xv -- Introduction xxiii -- Part I M2M AREA NETWORK PHYSICAL LAYERS -- 1 IEEE 802.15.4 3 -- 1.1 The IEEE 802 Committee Family of Protocols 3 -- 1.2 The Physical Layer 3 -- 1.2.1 Interferences with Other Technologies 5 -- 1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link Quality Information 7 -- 1.2.3 Sending a Data Frame 8 -- 1.3 The Media-Access Control Layer 8 -- 1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators, and the PAN Coordinator 9 -- 1.3.2 Association 12 -- 1.3.3 802.15.4 Addresses 13 -- 1.3.4 802.15.4 Frame Format 13 -- 1.3.5 Security 14 -- 1.4 Uses of 802.15.4 16 -- 1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g 17 -- 1.5.1 802.15.4e 17 -- 1.5.2 802.15.4g 21 -- 2 Powerline Communication for M2M Applications 23 -- 2.1 Overview of PLC Technologies 23 -- 2.2 PLC Landscape 23 -- 2.2.1 The Historical Period (1950 / 2000) 24 -- 2.2.2 After Year 2000: The Maturity of PLC 24 -- 2.3 Powerline Communication: A Constrained Media 27 -- 2.3.1 Powerline is a Difficult Channel 27 -- 2.3.2 Regulation Limitations 27 -- 2.3.3 Power Consumption 32 -- 2.3.4 Lossy Network 33 -- 2.3.5 Powerline is a Shared Media and Coexistence is not an Optional / Feature 35 -- 2.4 The Ideal PLC System for M2M 37 -- 2.4.1 Openness and Availability 38 -- 2.4.2 Range 38 -- 2.4.3 Power Consumption 38 -- 2.4.4 Data Rate 39 -- 2.4.5 Robustness 39 -- 2.4.6 EMC Regulatory Compliance 40 -- 2.4.7 Coexistence 40 -- 2.4.8 Security 40 -- 2.4.9 Latency 40 -- 2.4.10 Interoperability with M2M Wireless Services 40 -- 2.5 Conclusion 40 -- References 41 -- Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS, / BUILDING AUTOMATION AND HOME AUTOMATION -- 3 The BACnetTM Protocol 45 -- 3.1 Standardization 45 -- 3.1.1 United States 46 -- 3.1.2 Europe 46 -- 3.1.3 Interworking 46 -- 3.2 Technology 46 -- 3.2.1 Physical Layer 47 -- 3.2.2 Link Layer 47 -- 3.2.3 Network Layer 47 -- 3.2.4 Transport and Session Layers 49 -- 3.2.5 Presentation and Application Layers 49.
505 8 _a3.3 BACnet Security 55 -- 3.4 BACnet Over Web Services (Annex N, Annex H6) 55 -- 3.4.1 The Generic WS Model 56 -- 3.4.2 BACnet/WS Services 58 -- 3.4.3 The Web Services Profile for BACnet Objects 59 -- 3.4.4 Future Improvements 59 -- 4 The LonWorks R Control Networking Platform 61 -- 4.1 Standardization 61 -- 4.1.1 United States of America 61 -- 4.1.2 Europe 62 -- 4.1.3 China 62 -- 4.2 Technology 62 -- 4.2.1 Physical Layer 63 -- 4.2.2 Link Layer 64 -- 4.2.3 Network Layer 65 -- 4.2.4 Transport Layer 66 -- 4.2.5 Session Layer 67 -- 4.2.6 Presentation Layer 67 -- 4.2.7 Application Layer 71 -- 4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer 72 -- 4.4 A REST Interface for LonWorks 73 -- 4.4.1 LonBridge REST Transactions 74 -- 4.4.2 Requests 74 -- 4.4.3 Responses 75 -- 4.4.4 LonBridge REST Resources 75 -- 5 ModBus 79 -- 5.1 Introduction 79 -- 5.2 ModBus Standardization 80 -- 5.3 ModBus Message Framing and Transmission Modes 80 -- 5.4 ModBus/TCP 81 -- 6 KNX 83 -- 6.1 The Konnex/KNX Association 83 -- 6.2 Standardization 83 -- 6.3 KNX Technology Overview 84 -- 6.3.1 Physical Layer 84 -- 6.3.2 Data Link and Routing Layers, Addressing 87 -- 6.3.3 Transport Layer 89 -- 6.3.4 Application Layer 89 -- 6.3.5 KNX Devices, Functional Blocks and Interworking 89 -- 6.4 Device Configuration 92 -- 7 ZigBee 93 -- 7.1 Development of the Standard 93 -- 7.2 ZigBee Architecture 94 -- 7.2.1 ZigBee and 802.15.4 94 -- 7.2.2 ZigBee Protocol Layers 94 -- 7.2.3 ZigBee Node Types 96 -- 7.3 Association 96 -- 7.3.1 Forming a Network 96 -- 7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association 97 -- 7.3.3 Using NWK Rejoin 99 -- 7.4 The ZigBee Network Layer 99 -- 7.4.1 Short-Address Allocation 99 -- 7.4.2 Network Layer Frame Format 100 -- 7.4.3 Packet Forwarding 101 -- 7.4.4 Routing Support Primitives 101 -- 7.4.5 Routing Algorithms 102 -- 7.5 The ZigBee APS Layer 105 -- 7.5.1 Endpoints, Descriptors 106 -- 7.5.2 The APS Frame 106 -- 7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) 109.
505 8 _a7.6.1 ZDP Device and Service Discovery Services (Mandatory) 109 -- 7.6.2 ZDP Network Management Services (Mandatory) 110 -- 7.6.3 ZDP Binding Management Services (Optional) 111 -- 7.6.4 Group Management 111 -- 7.7 ZigBee Security 111 -- 7.7.1 ZigBee and 802.15.4 Security 111 -- 7.7.2 Key Types 113 -- 7.7.3 The Trust Center 114 -- 7.7.4 The ZDO Permissions Table 116 -- 7.8 The ZigBee Cluster Library (ZCL) 116 -- 7.8.1 Cluster 116 -- 7.8.2 Attributes 117 -- 7.8.3 Commands 117 -- 7.8.4 ZCL Frame 117 -- 7.9 ZigBee Application Profiles 119 -- 7.9.1 The Home Automation (HA) Application Profile 119 -- 7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) 122 -- 7.10 The ZigBee Gateway Specification for Network Devices 129 -- 7.10.1 The ZGD 130 -- 7.10.2 GRIP Binding 131 -- 7.10.3 SOAP Binding 132 -- 7.10.4 REST Binding 132 -- 7.10.5 Example IPHA / ZGD Interaction Using the REST Binding 134 -- 8 Z-Wave 139 -- 8.1 History and Management of the Protocol 139 -- 8.2 The Z-Wave Protocol 140 -- 8.2.1 Overview 140 -- 8.2.2 Z-Wave Node Types 140 -- 8.2.3 RF and MAC Layers 142 -- 8.2.4 Transfer Layer 143 -- 8.2.5 Routing Layer 145 -- 8.2.6 Application Layer 148 -- Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING / 9 M-Bus and Wireless M-Bus 155 -- 9.1 Development of the Standard 155 -- 9.2 M-Bus Architecture 156 -- 9.2.1 Physical Layer 156 -- 9.2.2 Link Layer 156 -- 9.2.3 Network Layer 157 -- 9.2.4 Application Layer 158 -- 9.3 Wireless M-Bus 160 -- 9.3.1 Physical Layer 160 -- 9.3.2 Data-Link Layer 162 -- 9.3.3 Application Layer 162 -- 9.3.4 Security 163 -- 10 The ANSI C12 Suite 165 -- 10.1 Introduction 165 -- 10.2 C12.19: The C12 Data Model 166 -- 10.2.1 The Read and Write Minimum Services 167 -- 10.2.2 Some Remarkable C12.19 Tables 167 -- 10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port 168 -- 10.4 C12.21: An Extension of C12.18 for Modem Communication 169 -- 10.4.1 Interactions with the Data-Link Layer 170 -- 10.4.2 Modifications and Additions to C12.19 Tables 171 -- 10.5 C12.22: C12.19 Tables Transport Over Any Networking Communication / System 171.
505 8 _a10.5.1 Reference Topology and Network Elements 171 -- 10.5.2 C12.22 Node to C12.22 Network Communications 173 -- 10.5.3 C12.22 Device to C12.22 Communication Module Interface 174 -- 10.5.4 C12.19 Updates 176 -- 10.6 Other Parts of ANSI C12 Protocol Suite 176 -- 10.7 RFC 6142: C12.22 Transport Over an IP Network 176 -- 10.8 REST-Based Interfaces to C12.19 177 -- 11 DLMS/COSEM 179 -- 11.1 DLMS Standardization 179 -- 11.1.1 The DLMS UA 179 -- 11.1.2 DLMS/COSEM, the Colored Books 179 -- 11.1.3 DLMS Standardization in IEC 180 -- 11.2 The COSEM Data Model 181 -- 11.3 The Object Identification System (OBIS) 182 -- 11.4 The DLMS/COSEM Interface Classes 184 -- 11.4.1 Data-Storage ICs 185 -- 11.4.2 Association ICs 185 -- 11.4.3 Time- and Event-Bound ICs 186 -- 11.4.4 Communication Setup Channel Objects 186 -- 11.5 Accessing COSEM Interface Objects 186 -- 11.5.1 The Application Association Concept 186 -- 11.5.2 The DLMS/COSEM Communication Framework 187 -- 11.5.3 The Data Communication Services of COSEM Application Layer 189 -- 11.6 End-to-End Security in the DLMS/COSEM Approach 191 -- 11.6.1 Access Control Security 191 -- 11.6.2 Data-Transport Security 192 -- Part IV THE NEXT GENERATION: IP-BASED PROTOCOLS -- 12 6LoWPAN and RPL 195 -- 12.1 Overview 195 -- 12.2 What is 6LoWPAN? 6LoWPAN and RPL Standardization 195 -- 12.3 Overview of the 6LoWPAN Adaptation Layer 196 -- 12.3.1 Mesh Addressing Header 197 -- 12.3.2 Fragment Header 198 -- 12.3.3 IPv6 Compression Header 198 -- 12.4 Context-Based Compression: IPHC 200 -- 12.5 RPL 202 -- 12.5.1 RPL Control Messages 204 -- 12.5.2 Construction of the DODAG and Upward Routes 204 -- 12.6 Downward Routes, Multicast Membership 206 -- 12.7 Packet Routing 207 -- 12.7.1 RPL Security 208 -- 13 ZigBee Smart Energy 2.0 209 -- 13.1 REST Overview 209 -- 13.1.1 Uniform Interfaces, REST Resources and Resource Identifiers 209 -- 13.1.2 REST Verbs 210 -- 13.1.3 Other REST Constraints, and What is REST After All? 211 -- 13.2 ZigBee SEP 2.0 Overview 212.
505 8 _a13.2.1 ZigBee IP 213 -- 13.2.2 ZigBee SEP 2.0 Resources 214 -- 13.3 Function Sets and Device Types 217 -- 13.3.1 Base Function Set 218 -- 13.3.2 Group Enrollment 221 -- 13.3.3 Meter 223 -- 13.3.4 Pricing 223 -- 13.3.5 Demand Response and Load Control Function Set 224 -- 13.3.6 Distributed Energy Resources 227 -- 13.3.7 Plug-In Electric Vehicle 227 -- 13.3.8 Messaging 230 -- 13.3.9 Registration 231 -- 13.4 ZigBee SE 2.0 Security 232 -- 13.4.1 Certificates 232 -- 13.4.2 IP Level Security 232 -- 13.4.3 Application-Level Security 235 -- 14 The ETSI M2M Architecture 237 -- 14.1 Introduction to ETSI TC M2M 237 -- 14.2 System Architecture 238 -- 14.2.1 High-Level Architecture 238 -- 14.2.2 Reference Points 239 -- 14.2.3 Service Capabilities 240 -- 14.3 ETSI M2M SCL Resource Structure 242 -- 14.3.1 SCL Resources 244 -- 14.3.2 Application Resources 244 -- 14.3.3 Access Right Resources 248 -- 14.3.4 Container Resources 248 -- 14.3.5 Group Resources 250 -- 14.3.6 Subscription and Notification Channel Resources 251 -- 14.4 ETSI M2M Interactions Overview 252 -- 14.5 Security in the ETSI M2M Framework 252 -- 14.5.1 Key Management 252 -- 14.5.2 Access Lists 254 -- 14.6 Interworking with Machine Area Networks 255 -- 14.6.1 Mapping M2M Networks to ETSI M2M Resources 256 -- 14.6.2 Interworking with ZigBee 1.0 257 -- 14.6.3 Interworking with C.12 262 -- 14.6.4 Interworking with DLMS/COSEM 264 -- 14.7 Conclusion on ETSI M2M 266 -- Part V KEY APPLICATIONS OF THE INTERNET OF THINGS -- 15 The Smart Grid 271 -- 15.1 Introduction 271 -- 15.2 The Marginal Cost of Electricity: Base and Peak Production 272 -- 15.3 Managing Demand: The Next Challenge of Electricity Operators . . . and / Why M2M Will Become a Key Technology 273 -- 15.4 Demand Response for Transmission System Operators (TSO) 274 -- 15.4.1 Grid-Balancing Authorities: The TSOs 274 -- 15.4.2 Power Shedding: Who Pays What? 276 -- 15.4.3 Automated Demand Response 277 -- 15.5 Case Study: RTE in France 277 -- 15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France 277.
505 8 _a15.5.2 The Bidding Mechanisms of the Tertiary Adjustment Reserve 281 -- 15.5.3 Who Pays for the Network-Balancing Costs? 283 -- 15.6 The Opportunity of Smart Distributed Energy Management 285 -- 15.6.1 Assessing the Potential of Residential and Small-Business Powerz Shedding (Heating/Cooling Control) 286 -- 15.6.2 Analysis of a Typical Home 287 -- 15.6.3 The Business Case 293 -- 15.7 Demand Response: The Big Picture 300 -- 15.7.1 From Network Balancing to Peak-Demand Suppression 300 -- 15.7.2 Demand Response Beyond Heating Systems 304 -- 15.8 Conclusion: The Business Case of Demand Response and Demand Shifting is a Key Driver for the Deployment of the Internet of Things 305 -- 16 Electric Vehicle Charging 307 -- 16.1 Charging Standards Overview 307 -- 16.1.1 IEC Standards Related to EV Charging 310 -- 16.1.2 SAE Standards 317 -- 16.1.3 J2293 318 -- 16.1.4 CAN / Bus 319 -- 16.1.5 J2847: The New (3z(BRecommended Practice(3y(B for High-Level / Communication Leveraging the ZigBee Smart Energy Profile 2.0 320 -- 16.2 Use Cases 321 -- 16.2.1 Basic Use Cases 321 -- 16.2.2 A More Complex Use Case: Thermal Preconditioning of the Car 323 -- 16.3 Conclusion 324 -- Appendix A Normal Aggregate Power Demand of a Set of Identical / Heating Systems with Hysteresis 327 -- Appendix B Effect of a Decrease of Tref. The Danger of Correlation 329 -- Appendix C Changing Tref without Introducing Correlation 331 -- C.1 Effect of an Increase of Tref 331 -- Appendix D Lower Consumption, A Side Benefit of Power Shedding 333 -- Index 337.
506 _aRestricted to subscribers or individual electronic text purchasers.
520 _aAn all-in-one reference to the major Home Area Networking, Building Automation and AMI protocols, including 802.15.4 over radio or PLC, 6LowPAN/RPL, ZigBee 1.0 and Smart Energy 2.0, Zwave, LON, BACNet, KNX, ModBus, mBus, C.12 and DLMS/COSEM, and the new ETSI M2M system level standard. In-depth coverage of Smart-grid and EV charging use cases. This book describes the Home Area Networking, Building Automation and AMI protocols and their evolution towards open protocols based on IP such as 6LowPAN and ETSI M2M. The authors discuss the approach taken by service providers to interconnect the protocols and solve the challenge of massive scalability of machine-to-machine communication for mission-critical applications, based on the next generation machine-to-machine ETSI M2M architecture. The authors demonstrate, using the example of the smartgrid use case, how the next generation utilities, by interconnecting and activating our physical environment, will be able to deliver more energy (notably for electric vehicles) with less impact on our natural resources. Key Features: . Offers a comprehensive overview of major existing M2M and AMI protocols. Covers the system aspects of large scale M2M and smart grid applications. Focuses on system level architecture, interworking, and nationwide use cases. Explores recent emerging technologies: 6LowPAN, ZigBee SE 2.0 and ETSI M2M, and for existing technologies covers recent developments related to interworking. Relates ZigBee to the issue of smartgrid, in the more general context of carrier grade M2M applications. Illustrates the benefits of the smartgrid concept based on real examples, including business cases This book will be a valuable guide for project managers working on smartgrid, M2M, telecommunications and utility projects, system engineers and developers, networking companies, and home automation companies. It will also be of use to senior academic researchers, students, and policy makers and regulators.
530 _aAlso available in print.
538 _aMode of access: World Wide Web
588 _aDescription based on PDF viewed 10/24/2017.
650 0 _aIntelligent buildings.
_924794
650 0 _aSmart power grids.
_97197
650 0 _aSensor networks.
_93437
655 0 _aElectronic books.
_93294
700 1 _aBoswarthick, David.
_929839
700 1 _aElloumi, Omar.
_929840
710 2 _aIEEE Xplore (Online Service),
_edistributor.
_929841
710 2 _aWiley,
_epublisher.
_929842
776 0 8 _iPrint version:
_z9781119994350
856 4 2 _3Abstract with links to resource
_uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8039557
942 _cEBK
999 _c74690
_d74690