000 | 09342nam a2200577 i 4500 | ||
---|---|---|---|
001 | 8040162 | ||
003 | IEEE | ||
005 | 20220712211750.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 171024s2008 maua ob 001 eng d | ||
010 | _z 2009004108 (print) | ||
020 |
_a9780470022658 _qelectronic |
||
020 |
_z9780470022634 _qcloth |
||
020 |
_z0470022639 _qcloth |
||
024 | 7 |
_a10.1002/9780470022658 _2doi |
|
035 | _a(CaBNVSL)mat08040162 | ||
035 | _a(IDAMS)0b00006485f0e636 | ||
040 |
_aCaBNVSL _beng _erda _cCaBNVSL _dCaBNVSL |
||
050 | 4 |
_aTK8360.O68 _bK74 2009eb |
|
082 | 0 | 0 |
_a621.36 _222 |
100 | 1 |
_aKress, Bernard C., _eauthor. _930827 |
|
245 | 1 | 0 |
_aApplied digital optics : _bfrom micro-optics to nanophotonics / _cBernard C. Kress, Patrick Meyrueis. |
264 | 1 |
_aChichester, U.K. : _bWiley, _c2009. |
|
264 | 2 |
_a[Piscataqay, New Jersey] : _bIEEE Xplore, _c[2009] |
|
300 |
_a1 PDF (xx, 617 pages) : _billustrations. |
||
336 |
_atext _2rdacontent |
||
337 |
_aelectronic _2isbdmedia |
||
338 |
_aonline resource _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aAbout the Authors -- Foreword by Professor Joseph Goodman -- Foreword by Professor Trevor Hall -- Acknowledgments -- Acronyms -- Introduction -- Why a Book on Digital Optics? -- Digital versus Analog -- What are Digital Optics? -- The Realm of Digital Optics -- 1 From Refraction to Diffraction -- 1.1 Refraction and Diffraction Phenomena -- 1.2 Understanding the Diffraction Phenomenon -- 1.3 No More Parasitic Effects -- 1.4 From Refractive Optics to Diffractive Optics -- 1.5 From Diffractive Optics to Digital Optics -- 1.6 Are Diffractives and Refractives Interchangeable Elements? -- 2 Classification of Digital Optics -- 2.1 Early Digital Optics -- 2.2 Guided-wave Digital Optics -- 2.3 Free-space Digital Optics -- 2.4 Hybrid Digital Optics -- 3 Guided-wave Digital Optics -- 3.1 From Optical Fibers to Planar Lightwave Circuits (PLCs) -- 3.2 Light Propagation in Waveguides -- 3.3 The Optical Fiber -- 3.4 The Dielectric Slab Waveguide -- 3.5 Channel Waveguides -- 3.6 PLC In- and Out-coupling -- 3.7 Functionality Integration -- 4 Refractive Micro-optics -- 4.1 Micro-optics in Nature -- 4.2 GRIN Lenses -- 4.3 Surface-relief Micro-optics -- 4.4 Micro-optics Arrays -- 5 Digital Diffractive Optics: Analytic Type -- 5.1 Analytic and Numeric Digital Diffractives -- 5.2 The Notion of Diffraction Orders -- 5.3 Diffraction Gratings -- 5.4 Diffractive Optical Elements -- 5.5 Diffractive Interferogram Lenses -- 6 Digital Diffractive Optics: Numeric Type -- 6.1 Computer-generated Holograms -- 6.2 Designing CGHs -- 6.3 Multiplexing CGHs -- 6.4 Various CGH Functionality Implementations -- 7 Digital Hybrid Optics -- 7.1 Why Combine Different Optical Elements? -- 7.2 Analysis of Lens Aberrations -- 7.3 Improvement of Optical Functionality -- 7.4 The Generation of Novel Optical Functionality -- 7.5 Waveguide-based Hybrid Optics -- 7.6 Reducing Weight, Size and Cost -- 7.7 Specifying Hybrid Optics in Optical CAD/CAM -- 7.8 A Parametric Design Example of Hybrid Optics via Ray-tracing Techniques. | |
505 | 8 | _a8 Digital Holographic Optics -- 8.1 Conventional Holography -- 8.2 Different Types of Holograms -- 8.3 Unique Features of Holograms -- 8.4 Modeling the Behavior of Volume Holograms -- 8.5 HOE Lenses -- 8.6 HOE Design Tools -- 8.7 Holographic Origination Techniques -- 8.8 Holographic Materials for HOEs -- 8.9 Other Holographic Techniques -- 9 Dynamic Digital Optics -- 9.1 An Introduction to Dynamic Digital Optics -- 9.2 Switchable Digital Optics -- 9.3 Tunable Digital Optics -- 9.4 Reconfigurable Digital Optics -- 9.5 Digital Software Lenses: Wavefront Coding -- 10 Digital Nano-optics -- 10.1 The Concept of 'Nano' in Optics -- 10.2 Sub-wavelength Gratings -- 10.3 Modeling Sub-wavelength Gratings -- 10.4 Engineering Effective Medium Optical Elements -- 10.5 Form Birefringence Materials -- 10.6 Guided Mode Resonance Gratings -- 10.7 Surface Plasmonics -- 10.8 Photonic Crystals -- 10.9 Optical Metamaterials -- 11 Digital Optics Modeling Techniques -- 11.1 Tools Based on Ray Tracing -- 11.2 Scalar Diffraction Based Propagators -- 11.3 Beam Propagation Modeling (BPM) Methods -- 11.4 Nonparaxial Diffraction Regime Issues -- 11.5 Rigorous Electromagnetic Modeling Techniques -- 11.6 Digital Optics Design and Modeling Tools Available Today -- 11.7 Practical Paraxial Numeric Modeling Examples -- 12 Digital Optics Fabrication Techniques -- 12.1 Holographic Origination -- 12.2 Diamond Tool Machining -- 12.3 Photo-reduction -- 12.4 Microlithographic Fabrication of Digital Optics -- 12.5 Micro-refractive Element Fabrication Techniques -- 12.6 Direct Writing Techniques -- 12.7 Gray-scale Optical Lithography -- 12.8 Front/Back Side Wafer Alignments and Wafer Stacks -- 12.9 A Summary of Fabrication Techniques -- 13 Design for Manufacturing -- 13.1 The Lithographic Challenge -- 13.2 Software Solutions: Reticle Enhancement Techniques -- 13.3 Hardware Solutions -- 13.4 Process Solutions -- 14 Replication Techniques for Digital Optics -- 14.1 The LIGA Process -- 14.2 Mold Generation Techniques. | |
505 | 8 | _a14.3 Embossing Techniques -- 14.4 The UV Casting Process -- 14.5 Injection Molding Techniques -- 14.6 The Sol-Gel Process -- 14.7 The Nano-replication Process -- 14.8 A Summary of Replication Technologies -- 15 Specifying and Testing Digital Optics -- 15.1 Fabless Lithographic Fabrication Management -- 15.2 Specifying the Fabrication Process -- 15.3 Fabrication Evaluation -- 15.4 Optical Functionality Evaluation -- 16 Digital Optics Application Pools -- 16.1 Heavy Industry -- 16.2 Defense, Security and Space -- 16.3 Clean Energy -- 16.4 Factory Automation -- 16.5 Optical Telecoms -- 16.6 Biomedical Applications -- 16.7 Entertainment and Marketing -- 16.8 Consumer Electronics -- 16.9 Summary -- 16.10 The Future of Digital Optics -- Conclusion -- Appendix A: Rigorous Theory of Diffraction -- A.1 Maxwell's Equations -- A.2 Wave Propagation and the Wave Equation -- A.3 Towards a Scalar Field Representation -- Appendix B: The Scalar Theory of Diffraction -- B.1 Full Scalar Theory -- B.2 Scalar Diffraction Models for Digital Optics -- B.3 Extended Scalar Models -- Appendix C: FFTs and DFTs in Optics -- C.1 The Fourier Transform in Optics Today -- C.2 Conditions for the Existence of the Fourier Transform -- C.3 The Complex Fourier Transform -- C.4 The Discrete Fourier Transform -- C.5 The Properties of the Fourier Transform and Examples in Optics -- C.6 Other Transforms -- Index. | |
506 | _aRestricted to subscribers or individual electronic text purchasers. | ||
520 | _aMiniaturization and mass replications have begun to lead the optical industry in the transition from traditional analog to novel digital optics. As digital optics enter the realm of mainstream technology through the worldwide sale of consumer electronic devices, this timely book aims to present the topic of digital optics in a unified way. Ranging from micro-optics to nanophotonics, and design to fabrication through to integration in final products, it reviews the various physical implementations of digital optics in either micro-refractives, waveguide (planar lightwave chips), diffractive and hybrid optics or sub-wavelength structures (resonant gratings, surface plasmons, photonic crystals and metamaterials). Finally, it presents a comprehensive list of industrial and commercial applications that are taking advantage of the unique properties of digital optics. . Helps optical engineers review and choose the appropriate software tools to design, model and generate fabrication files.. Gives product managers access to an exhaustive list of applications available in today's market for integrating such digital optics, as well as where the next potential application of digital optics might be.. Provides a broad view for technical marketing managers in all aspects of digital optics, and how such optics can be classified.. Explains the numerical implementation of optical design and modelling techniques.. Enables micro-optics foundries to integrate the latest fabrication and replication techniques, and accordingly fine tune their own fabrication processes.. Supplementary book material is available at <a href="http://www.applieddigitaloptics.com/">www.applieddigitaloptics.com</a> Applied Digital Optics is aimed primarily at optical engineers and product development and technical marketing managers; it is also of interest to graduate-level photonics students and micro-optic foundries. | ||
530 | _aAlso available in print. | ||
538 | _aMode of access: World Wide Web | ||
588 | _aDescription based on PDF viewed 10/24/2017. | ||
650 | 0 |
_aOptical MEMS. _918951 |
|
650 | 0 |
_aNanophotonics. _94541 |
|
650 | 0 |
_aIntegrated optics. _914454 |
|
650 | 0 |
_aSignal processing _xDigital techniques. _93369 |
|
650 | 0 |
_aDiffraction gratings. _930828 |
|
655 | 0 |
_aElectronic books. _93294 |
|
700 | 1 |
_aMeyrueis, Patrick. _930829 |
|
710 | 2 |
_aIEEE Xplore (Online Service), _edistributor. _930830 |
|
710 | 2 |
_aWiley, _epublisher. _930831 |
|
776 | 0 | 8 |
_iPrint version: _z9780470022634 |
856 | 4 | 2 |
_3Abstract with links to resource _uhttps://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8040162 |
942 | _cEBK | ||
999 |
_c74921 _d74921 |