000 03895nam a22005535i 4500
001 978-3-319-63384-8
003 DE-He213
005 20220801213714.0
007 cr nn 008mamaa
008 170824s2018 sz | s |||| 0|eng d
020 _a9783319633848
_9978-3-319-63384-8
024 7 _a10.1007/978-3-319-63384-8
_2doi
050 4 _aTA349-359
072 7 _aTGMD
_2bicssc
072 7 _aSCI096000
_2bisacsh
072 7 _aTGMD
_2thema
082 0 4 _a620.105
_223
100 1 _aMartínez Pañeda, Emilio.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_933795
245 1 0 _aStrain Gradient Plasticity-Based Modeling of Damage and Fracture
_h[electronic resource] /
_cby Emilio Martínez Pañeda.
250 _a1st ed. 2018.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2018.
300 _aXVII, 159 p. 66 illus., 47 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5061
505 0 _aPart.-Introduction -- Numerical framework -- Gradient plasticity formulations -- Numerical implementation -- Part ii -- Results -- Mechanism based crack tip characterization -- On fracture infinite strain gradient plasticity -- The role of energetic and dissipative length parameters -- Hydrogen diffusion towards the fracture process zone -- SGP-Based modelling of heac -- Conclusions.-Bibliography.
520 _aThis book provides a comprehensive introduction to numerical modeling of size effects in metal plasticity. The main classes of strain gradient plasticity formulations are described and efficiently implemented in the context of the finite element method. A robust numerical framework is presented and employed to investigate the role of strain gradients on structural integrity assessment. The results obtained reveal the need of incorporating the influence on geometrically necessary dislocations in the modeling of various damage mechanisms. Large gradients of plastic strain increase dislocation density, promoting strain hardening and elevating crack tip stresses. This stress elevation is quantified under both infinitesimal and finite deformation theories, rationalizing the experimental observation of cleavage fracture in the presence of significant plastic flow. Gradient-enhanced modeling of crack growth resistance, hydrogen diffusion and environmentally assisted cracking highlighted the relevance of an appropriate characterization of the mechanical response at the small scales involved in crack tip deformation. Particularly promising predictions are attained in the field of hydrogen embrittlement. The research has been conducted at the Universities of Cambridge, Oviedo, Luxembourg, and the Technical University of Denmark, in a collaborative effort to understand, model and optimize the mechanical response of engineering materials. .
650 0 _aMechanics, Applied.
_93253
650 0 _aSolids.
_93750
650 0 _aMetals.
_911824
650 0 _aMathematical physics.
_911013
650 1 4 _aSolid Mechanics.
_931612
650 2 4 _aMetals and Alloys.
_931871
650 2 4 _aTheoretical, Mathematical and Computational Physics.
_931560
710 2 _aSpringerLink (Online service)
_933796
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319633831
776 0 8 _iPrinted edition:
_z9783319633855
776 0 8 _iPrinted edition:
_z9783319875415
830 0 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5061
_933797
856 4 0 _uhttps://doi.org/10.1007/978-3-319-63384-8
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c75500
_d75500