000 04137nam a22005775i 4500
001 978-981-13-0550-4
003 DE-He213
005 20220801213719.0
007 cr nn 008mamaa
008 180616s2019 si | s |||| 0|eng d
020 _a9789811305504
_9978-981-13-0550-4
024 7 _a10.1007/978-981-13-0550-4
_2doi
050 4 _aQA76.9.B45
072 7 _aUN
_2bicssc
072 7 _aCOM021000
_2bisacsh
072 7 _aUN
_2thema
082 0 4 _a005.7
_223
245 1 0 _aBig Data Processing Using Spark in Cloud
_h[electronic resource] /
_cedited by Mamta Mittal, Valentina E. Balas, Lalit Mohan Goyal, Raghvendra Kumar.
250 _a1st ed. 2019.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2019.
300 _aXIII, 264 p. 89 illus., 62 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aStudies in Big Data,
_x2197-6511 ;
_v43
505 0 _aConcepts of Big Data and Apache Spark -- Big Data Analysis in Cloud and Machine Learning -- Security Issues and Challenges related to Big Data -- Big Data Security Solutions in Cloud -- Data Science and Analytics -- Big Data Technologies -- Data Analysis with Casandra and Spark -- Spin up the Spark Cluster -- Learn Scala -- IO for Spark -- Processing with Spark -- Spark Data Frames and Spark SQL -- Machine Learning and Advanced Analytics -- Parallel Programming with Spark -- Distributed Graph Processing with Spark -- Real Time Processing with Spark -- Spark in Real World -- Case Studies. .
520 _aThe book describes the emergence of big data technologies and the role of Spark in the entire big data stack. It compares Spark and Hadoop and identifies the shortcomings of Hadoop that have been overcome by Spark. The book mainly focuses on the in-depth architecture of Spark and our understanding of Spark RDDs and how RDD complements big data’s immutable nature, and solves it with lazy evaluation, cacheable and type inference. It also addresses advanced topics in Spark, starting with the basics of Scala and the core Spark framework, and exploring Spark data frames, machine learning using Mllib, graph analytics using Graph X and real-time processing with Apache Kafka, AWS Kenisis, and Azure Event Hub. It then goes on to investigate Spark using PySpark and R. Focusing on the current big data stack, the book examines the interaction with current big data tools, with Spark being the core processing layer for all types of data. The book is intended for data engineers and scientists working on massive datasets and big data technologies in the cloud. In addition to industry professionals, it is helpful for aspiring data processing professionals and students working in big data processing and cloud computing environments.
650 0 _aBig data.
_94174
650 0 _aData protection.
_97245
650 0 _aQuantitative research.
_94633
650 1 4 _aBig Data.
_94174
650 2 4 _aData and Information Security.
_931990
650 2 4 _aData Analysis and Big Data.
_933861
700 1 _aMittal, Mamta.
_eeditor.
_0(orcid)0000-0003-0490-4413
_1https://orcid.org/0000-0003-0490-4413
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_933862
700 1 _aBalas, Valentina E.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_933863
700 1 _aGoyal, Lalit Mohan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_933864
700 1 _aKumar, Raghvendra.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_933865
710 2 _aSpringerLink (Online service)
_933866
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789811305498
776 0 8 _iPrinted edition:
_z9789811305511
776 0 8 _iPrinted edition:
_z9789811344480
830 0 _aStudies in Big Data,
_x2197-6511 ;
_v43
_933867
856 4 0 _uhttps://doi.org/10.1007/978-981-13-0550-4
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c75512
_d75512