000 03344nam a22005415i 4500
001 978-3-319-69059-9
003 DE-He213
005 20220801214034.0
007 cr nn 008mamaa
008 171115s2018 sz | s |||| 0|eng d
020 _a9783319690599
_9978-3-319-69059-9
024 7 _a10.1007/978-3-319-69059-9
_2doi
050 4 _aR856-857
072 7 _aMQW
_2bicssc
072 7 _aTEC059000
_2bisacsh
072 7 _aMQW
_2thema
082 0 4 _a610.28
_223
100 1 _aTay, Andy Kah Ping.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_935938
245 1 0 _aAcute and Chronic Neural Stimulation via Mechano-Sensitive Ion Channels
_h[electronic resource] /
_cby Andy Kah Ping Tay.
250 _a1st ed. 2018.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2018.
300 _aXVII, 119 p. 33 illus., 32 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5061
505 0 _aMicro- and Nano-Technologies to Probe Brain Mechanobiology -- Acute Neural Stimulation -- Chronic Neural Stimulation -- Phenotypic Selection of Magnetospirillum magneticum (AMB-1) Over-Producers using Magnetic Ratcheting -- Magnetic Microfluidic Separation for Estimating the Magnetic Contents of Magnetotactic Bacteria -- Outlook for Magnetic Neural Stimulation Techniques. .
520 _aThis book describes the tools, developed by the author, for perturbing endogenous mechano-sensitive ion channels for magneto-mechanical neuro-modulation. He explores the ways in which these tools compare against existing ones such as electricity, chemicals, optogenetics, and techniques like thermos/magneto-genetics. The author also reports on two platforms—magnetic ratcheting and magnetic microfluidics for directed evolution and high throughput culture of magnetotactic bacteria—that produce high quality magnetic nanoparticles for biomedical applications like neural stimulations. This thesis was submitted to and approved by the University of California, Los Angeles. Introduces technology for non-invasive control of neural activities that offer deep tissue penetration and controllable dosage; Examines the effects of biomechanical forces on cellular functions; Explores how to improve the reproducibility and uptake of magnetic tools for non-invasive neural modulation.
650 0 _aBiomedical engineering.
_93292
650 0 _aNanotechnology.
_94707
650 0 _aNanoscience.
_910727
650 1 4 _aBiomedical Engineering and Bioengineering.
_931842
650 2 4 _aNanotechnology.
_94707
650 2 4 _aNanophysics.
_932302
710 2 _aSpringerLink (Online service)
_935939
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319690582
776 0 8 _iPrinted edition:
_z9783319690605
776 0 8 _iPrinted edition:
_z9783319887081
830 0 _aSpringer Theses, Recognizing Outstanding Ph.D. Research,
_x2190-5061
_935940
856 4 0 _uhttps://doi.org/10.1007/978-3-319-69059-9
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c75889
_d75889