000 05191nam a22006375i 4500
001 978-1-4471-6772-3
003 DE-He213
005 20220801214217.0
007 cr nn 008mamaa
008 151031s2016 xxk| s |||| 0|eng d
020 _a9781447167723
_9978-1-4471-6772-3
024 7 _a10.1007/978-1-4471-6772-3
_2doi
050 4 _aTJ212-225
072 7 _aTJFM
_2bicssc
072 7 _aGPFC
_2bicssc
072 7 _aTEC004000
_2bisacsh
072 7 _aTJFM
_2thema
082 0 4 _a629.8312
_223
082 0 4 _a003
_223
100 1 _aOwens, David H.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_936990
245 1 0 _aIterative Learning Control
_h[electronic resource] :
_bAn Optimization Paradigm /
_cby David H. Owens.
250 _a1st ed. 2016.
264 1 _aLondon :
_bSpringer London :
_bImprint: Springer,
_c2016.
300 _aXXVIII, 456 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aAdvances in Industrial Control,
_x2193-1577
505 0 _aIterative Learning Control: Background and Review. Mathematical and Linear Modelling Methodologies -- Norm Optimal Iterative Learning Control: An Optimal Control Perspective -- Predicting the Effects of Non-minimum-phase Zeros -- Predictive Norm Optimal Iterative Learning Control -- Other Applications of Norm Optimal Iterative Learning Control -- Successive Projection Algorithms -- Parameter Optimal Iterative Learning Control -- Robustness of Parameter Optimal Iterative Learning Control -- Multi-parameter Optimal Iterative Learning Control -- No Normal 0 false false false EN-GB X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-fareast-language:EN-US;} nlinear Iterative Learning Control and Optimization.
520 _aThis book develops a coherent theoretical approach to algorithm design for iterative learning control based on the use of optimization concepts. Concentrating initially on linear, discrete-time systems, the author gives the reader access to theories based on either signal or parameter optimization. Although the two approaches are shown to be related in a formal mathematical sense, the text presents them separately because their relevant algorithm design issues are distinct and give rise to different performance capabilities. Together with algorithm design, the text demonstrates that there are new algorithms that are capable of incorporating input and output constraints, enable the algorithm to reconfigure systematically in order to meet the requirements of different reference signals and also to support new algorithms for local convergence of nonlinear iterative control. Simulation and application studies are used to illustrate algorithm properties and performance in systems like gantry robots and other electromechanical and/or mechanical systems. Iterative Learning Control will interest academics and graduate students working in control who will find it a useful reference to the current status of a powerful and increasingly popular method of control. The depth of background theory and links to practical systems will be of use to engineers responsible for precision repetitive processes. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
650 0 _aControl engineering.
_931970
650 0 _aSystem theory.
_93409
650 0 _aControl theory.
_93950
650 0 _aArtificial intelligence.
_93407
650 0 _aMachinery.
_931894
650 0 _aRobotics.
_92393
650 0 _aAutomation.
_92392
650 1 4 _aControl and Systems Theory.
_931972
650 2 4 _aSystems Theory, Control .
_931597
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aMachinery and Machine Elements.
_931895
650 2 4 _aControl, Robotics, Automation.
_931971
710 2 _aSpringerLink (Online service)
_936991
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9781447167709
776 0 8 _iPrinted edition:
_z9781447167716
776 0 8 _iPrinted edition:
_z9781447169284
830 0 _aAdvances in Industrial Control,
_x2193-1577
_936992
856 4 0 _uhttps://doi.org/10.1007/978-1-4471-6772-3
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c76083
_d76083