000 03207nam a22005295i 4500
001 978-981-13-2640-0
003 DE-He213
005 20220801214325.0
007 cr nn 008mamaa
008 180925s2019 si | s |||| 0|eng d
020 _a9789811326400
_9978-981-13-2640-0
024 7 _a10.1007/978-981-13-2640-0
_2doi
050 4 _aTK5101-5105.9
072 7 _aTJK
_2bicssc
072 7 _aTEC041000
_2bisacsh
072 7 _aTJK
_2thema
082 0 4 _a621.382
_223
100 1 _aAzizi, Aydin.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_937692
245 1 0 _aApplications of Artificial Intelligence Techniques in Industry 4.0
_h[electronic resource] /
_cby Aydin Azizi.
250 _a1st ed. 2019.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2019.
300 _aXII, 61 p. 50 illus., 34 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Applied Sciences and Technology,
_x2191-5318
505 0 _aIntroduction -- Modern Manufacturing -- RFID Network Planning -- Hybrid Artificial Intelligence Optimization Technique -- Implementation.
520 _aThis book is to presents and evaluates a way of modelling and optimizing nonlinear RFID Network Planning (RNP) problems using artificial intelligence techniques. It uses Artificial Neural Network models (ANN) to bind together the computational artificial intelligence algorithm with knowledge representation an efficient artificial intelligence paradigm to model and optimize RFID networks. This effort leads to proposing a novel artificial intelligence algorithm which has been named hybrid artificial intelligence optimization technique to perform optimization of RNP as a hard learning problem. This hybrid optimization technique consists of two different optimization phases. First phase is optimizing RNP by Redundant Antenna Elimination (RAE) algorithm and the second phase which completes RNP optimization process is Ring Probabilistic Logic Neural Networks (RPLNN). The hybrid paradigm is explored using a flexible manufacturing system (FMS) and the results are compared with well-known evolutionary optimization technique namely Genetic Algorithm (GA) to demonstrate the feasibility of the proposed architecture successfully.
650 0 _aTelecommunication.
_910437
650 0 _aArtificial intelligence.
_93407
650 0 _aIndustrial Management.
_95847
650 1 4 _aCommunications Engineering, Networks.
_931570
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aIndustrial Management.
_95847
710 2 _aSpringerLink (Online service)
_937693
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789811326394
776 0 8 _iPrinted edition:
_z9789811326417
830 0 _aSpringerBriefs in Applied Sciences and Technology,
_x2191-5318
_937694
856 4 0 _uhttps://doi.org/10.1007/978-981-13-2640-0
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c76220
_d76220