000 02859nam a22005295i 4500
001 978-3-319-71688-6
003 DE-He213
005 20220801214453.0
007 cr nn 008mamaa
008 171221s2018 sz | s |||| 0|eng d
020 _a9783319716886
_9978-3-319-71688-6
024 7 _a10.1007/978-3-319-71688-6
_2doi
050 4 _aQ342
072 7 _aUYQ
_2bicssc
072 7 _aTEC009000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
100 1 _aGramacki, Artur.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_938554
245 1 0 _aNonparametric Kernel Density Estimation and Its Computational Aspects
_h[electronic resource] /
_cby Artur Gramacki.
250 _a1st ed. 2018.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2018.
300 _aXXIX, 176 p. 70 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aStudies in Big Data,
_x2197-6511 ;
_v37
520 _aThis book describes computational problems related to kernel density estimation (KDE) – one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented. The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting. The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.
650 0 _aComputational intelligence.
_97716
650 0 _aArtificial intelligence.
_93407
650 0 _aBig data.
_94174
650 1 4 _aComputational Intelligence.
_97716
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aBig Data.
_94174
710 2 _aSpringerLink (Online service)
_938555
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319716879
776 0 8 _iPrinted edition:
_z9783319716893
776 0 8 _iPrinted edition:
_z9783319890944
830 0 _aStudies in Big Data,
_x2197-6511 ;
_v37
_938556
856 4 0 _uhttps://doi.org/10.1007/978-3-319-71688-6
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c76383
_d76383