000 | 03063nam a22005655i 4500 | ||
---|---|---|---|
001 | 978-981-13-7422-7 | ||
003 | DE-He213 | ||
005 | 20220801214839.0 | ||
007 | cr nn 008mamaa | ||
008 | 190430s2020 si | s |||| 0|eng d | ||
020 |
_a9789811374227 _9978-981-13-7422-7 |
||
024 | 7 |
_a10.1007/978-981-13-7422-7 _2doi |
|
050 | 4 | _aTA703-705.4 | |
072 | 7 |
_aTNC _2bicssc |
|
072 | 7 |
_aSCI042000 _2bisacsh |
|
072 | 7 |
_aTNC _2thema |
|
082 | 0 | 4 |
_a624.15 _223 |
100 | 1 |
_aZhang, Wengang. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _940821 |
|
245 | 1 | 0 |
_aMARS Applications in Geotechnical Engineering Systems _h[electronic resource] : _bMulti-Dimension with Big Data / _cby Wengang Zhang. |
250 | _a1st ed. 2020. | ||
264 | 1 |
_aSingapore : _bSpringer Nature Singapore : _bImprint: Springer, _c2020. |
|
300 |
_aXXI, 240 p. 99 illus., 64 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aIntroduction -- MARS methodology -- Simple MARS modeling examples -- MARS use in prediction of collapse potential for compacted soils -- MARS use in prediction of diaphragm wall deflections in soft clays -- MARS use in HP-pile drivability assessment -- MARS use in assessment of soil liquefaction -- MARS use in evaluating entry-type excavation stability -- Summary and conclusions. | |
520 | _aThis book presents the application of a comparatively simple nonparametric regression algorithm, known as the multivariate adaptive regression splines (MARS) surrogate model, which can be used to approximate the relationship between the inputs and outputs, and express that relationship mathematically. The book first describes the MARS algorithm, then highlights a number of geotechnical applications with multivariate big data sets to explore the approach’s generalization capabilities and accuracy. As such, it offers a valuable resource for all geotechnical researchers, engineers, and general readers interested in big data analysis. . | ||
650 | 0 |
_aEngineering geology. _94157 |
|
650 | 0 |
_aGeotechnical engineering. _94958 |
|
650 | 0 |
_aBig data. _94174 |
|
650 | 0 |
_aQuantitative research. _94633 |
|
650 | 0 |
_aComputer input-output equipment. _922942 |
|
650 | 1 | 4 |
_aGeoengineering. _931828 |
650 | 2 | 4 |
_aGeotechnical Engineering and Applied Earth Sciences. _931829 |
650 | 2 | 4 |
_aBig Data. _94174 |
650 | 2 | 4 |
_aData Analysis and Big Data. _940822 |
650 | 2 | 4 |
_aInput/Output and Data Communications. _937326 |
710 | 2 |
_aSpringerLink (Online service) _940823 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9789811374210 |
776 | 0 | 8 |
_iPrinted edition: _z9789811374234 |
776 | 0 | 8 |
_iPrinted edition: _z9789811374241 |
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-981-13-7422-7 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c76817 _d76817 |