000 | 04043nam a22006015i 4500 | ||
---|---|---|---|
001 | 978-3-319-97864-2 | ||
003 | DE-He213 | ||
005 | 20220801215224.0 | ||
007 | cr nn 008mamaa | ||
008 | 181027s2019 sz | s |||| 0|eng d | ||
020 |
_a9783319978642 _9978-3-319-97864-2 |
||
024 | 7 |
_a10.1007/978-3-319-97864-2 _2doi |
|
050 | 4 | _aTK5101-5105.9 | |
072 | 7 |
_aTJK _2bicssc |
|
072 | 7 |
_aTEC041000 _2bisacsh |
|
072 | 7 |
_aTJK _2thema |
|
082 | 0 | 4 |
_a621.382 _223 |
245 | 1 | 0 |
_aClustering Methods for Big Data Analytics _h[electronic resource] : _bTechniques, Toolboxes and Applications / _cedited by Olfa Nasraoui, Chiheb-Eddine Ben N'Cir. |
250 | _a1st ed. 2019. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2019. |
|
300 |
_aIX, 187 p. 63 illus., 31 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aUnsupervised and Semi-Supervised Learning, _x2522-8498 |
|
505 | 0 | _aIntroduction -- Clustering large scale data -- Clustering heterogeneous data -- Distributed clustering methods -- Clustering structured and unstructured data -- Clustering and unsupervised learning for deep learning -- Deep learning methods for clustering -- Clustering high speed cloud, grid, and streaming data -- Extension of partitioning, model based, density based, grid based, fuzzy and evolutionary clustering methods for big data analysis -- Large documents and textual data clustering -- Applications of big data clustering methods -- Clustering multimedia and multi-structured data -- Large-scale recommendation systems and social media systems -- Clustering multimedia and multi-structured data -- Real life applications of big data clustering -- Validation measures for big data clustering methods -- Conclusion. | |
520 | _aThis book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. . | ||
650 | 0 |
_aTelecommunication. _910437 |
|
650 | 0 |
_aComputational intelligence. _97716 |
|
650 | 0 |
_aData mining. _93907 |
|
650 | 0 |
_aQuantitative research. _94633 |
|
650 | 0 |
_aPattern recognition systems. _93953 |
|
650 | 1 | 4 |
_aCommunications Engineering, Networks. _931570 |
650 | 2 | 4 |
_aComputational Intelligence. _97716 |
650 | 2 | 4 |
_aData Mining and Knowledge Discovery. _943079 |
650 | 2 | 4 |
_aData Analysis and Big Data. _943080 |
650 | 2 | 4 |
_aAutomated Pattern Recognition. _931568 |
700 | 1 |
_aNasraoui, Olfa. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _943081 |
|
700 | 1 |
_aBen N'Cir, Chiheb-Eddine. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _943082 |
|
710 | 2 |
_aSpringerLink (Online service) _943083 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783319978635 |
776 | 0 | 8 |
_iPrinted edition: _z9783319978659 |
776 | 0 | 8 |
_iPrinted edition: _z9783030074197 |
830 | 0 |
_aUnsupervised and Semi-Supervised Learning, _x2522-8498 _943084 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-97864-2 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c77248 _d77248 |