000 03958nam a22005295i 4500
001 978-3-658-31605-1
003 DE-He213
005 20220801215859.0
007 cr nn 008mamaa
008 201201s2021 gw | s |||| 0|eng d
020 _a9783658316051
_9978-3-658-31605-1
024 7 _a10.1007/978-3-658-31605-1
_2doi
050 4 _aTA401-492
072 7 _aTNK
_2bicssc
072 7 _aTEC009020
_2bisacsh
072 7 _aTNK
_2thema
082 0 4 _a691
_223
100 1 _aRosendahl, Philipp Laurens.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_947018
245 1 0 _aFrom Bulk to Structural Failure: Fracture of Hyperelastic Materials
_h[electronic resource] /
_cby Philipp Laurens Rosendahl.
250 _a1st ed. 2021.
264 1 _aWiesbaden :
_bSpringer Fachmedien Wiesbaden :
_bImprint: Springer Vieweg,
_c2021.
300 _aXVII, 204 p. 81 illus., 20 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aMechanik, Werkstoffe und Konstruktion im Bauwesen,
_x2512-3246 ;
_v57
505 0 _aIntroduction -- Theoretical background -- Samples and finite element models -- Experimental material characterization -- Bulk material failure -- Nucleation of finite cracks in hyperelastic materials.-Hyperelastic weak interface model -- Conclusions and perspectives.
520 _aThis thesis investigates the fracture of nearly incompressible hyperelastic media. It covers the different characteristics of bulk material failure under dilatational or distortional loads and develops a unified description of the corresponding failure surface. It proposes a coupled strain and energy failure criterion for the assessment of notch-induced crack nucleation and presents a weak-interface-model that allows for efficient stress, strain and failure analyses of hyperelastic adhesive lap joints. Theoretical concepts for the measurement of fracture properties of nonlinear elastic materials are provided. The methodology is developed using two exemplary hyperelastic silicones, DOWSIL 993 Structural Glazing Sealant and DOWSIL Transparent Structural Silicone Adhesive, and is validated using large sets of experiments of different loading conditions. Philipp Rosendahl studied mechanical engineering at the Technical University of Darmstadt, the University of Illinois at Urbana-Champaign and the Royal Institute of Technology in Stockholm. His doctoral thesis on the fracture mechanics of thin layers opened applications to problems of structural engineering such as adhesive bonding in the fields of mechanical and civil engineering and to geophysical problems such as skier-triggered snow slab avalanche release. The author is currently working as the Junior Research Group Head for Structural Mechanics and Additive Manufacturing of the Institute of Structural Mechanics and Design at the Technical University of Darmstadt and co-founded the startup company 2phi, which aims at improving skier safety in the backcountry by transferring scientific advances into practice.
650 0 _aBuilding materials.
_931878
650 0 _aBuildings—Design and construction.
_932147
650 0 _aConstruction industry—Management.
_947019
650 1 4 _aBuilding Materials.
_931878
650 2 4 _aBuilding Construction and Design.
_932148
650 2 4 _aConstruction Management.
_947020
710 2 _aSpringerLink (Online service)
_947021
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783658316044
776 0 8 _iPrinted edition:
_z9783658316068
830 0 _aMechanik, Werkstoffe und Konstruktion im Bauwesen,
_x2512-3246 ;
_v57
_947022
856 4 0 _uhttps://doi.org/10.1007/978-3-658-31605-1
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c77961
_d77961