000 | 03727nam a22005655i 4500 | ||
---|---|---|---|
001 | 978-3-030-65900-4 | ||
003 | DE-He213 | ||
005 | 20220801220228.0 | ||
007 | cr nn 008mamaa | ||
008 | 210212s2021 sz | s |||| 0|eng d | ||
020 |
_a9783030659004 _9978-3-030-65900-4 |
||
024 | 7 |
_a10.1007/978-3-030-65900-4 _2doi |
|
050 | 4 | _aTK5101-5105.9 | |
072 | 7 |
_aTJK _2bicssc |
|
072 | 7 |
_aTEC041000 _2bisacsh |
|
072 | 7 |
_aTJK _2thema |
|
082 | 0 | 4 |
_a621.382 _223 |
100 | 1 |
_aJo, Taeho. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _949055 |
|
245 | 1 | 0 |
_aMachine Learning Foundations _h[electronic resource] : _bSupervised, Unsupervised, and Advanced Learning / _cby Taeho Jo. |
250 | _a1st ed. 2021. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2021. |
|
300 |
_aXX, 391 p. 277 illus., 13 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aPart I. Foundation -- Chapter 1. Introduction -- Chapter 2. Numerical Vectors -- Chapter 3.Data Encoding -- Chapter 4. Simple Machine Learning Algorithms -- Part II. Supervised Learning -- Chapter 5. Instance based Learning -- Chapter 6. Probabilistic Learning -- Chapter 7. Decision Tree -- Chapter 8. Support Vector Machine -- Part III. Unsupervised Learning -- Chapter 9. Simple Clustering Algorithms -- Chapter 10. K Means Algorithm -- Chapter 11. EM Algorithm -- Chapter 12. Advanced Clustering -- Part IV. Advanced Topics -- Chapter 13. Ensemble Learning -- Chapter 14. Semi-Supervised Learning -- Chapter 15. Temporal Learning -- Chapter 16. Reinforcement Learning. | |
520 | _aThis book provides conceptual understanding of machine learning algorithms though supervised, unsupervised, and advanced learning techniques. The book consists of four parts: foundation, supervised learning, unsupervised learning, and advanced learning. The first part provides the fundamental materials, background, and simple machine learning algorithms, as the preparation for studying machine learning algorithms. The second and the third parts provide understanding of the supervised learning algorithms and the unsupervised learning algorithms as the core parts. The last part provides advanced machine learning algorithms: ensemble learning, semi-supervised learning, temporal learning, and reinforced learning. Provides comprehensive coverage of both learning algorithms: supervised and unsupervised learning; Outlines the computation paradigm for solving classification, regression, and clustering; Features essential techniques for building the a new generation of machine learning. | ||
650 | 0 |
_aTelecommunication. _910437 |
|
650 | 0 |
_aComputational intelligence. _97716 |
|
650 | 0 |
_aData mining. _93907 |
|
650 | 0 |
_aInformation storage and retrieval systems. _922213 |
|
650 | 0 |
_aQuantitative research. _94633 |
|
650 | 1 | 4 |
_aCommunications Engineering, Networks. _931570 |
650 | 2 | 4 |
_aComputational Intelligence. _97716 |
650 | 2 | 4 |
_aData Mining and Knowledge Discovery. _949056 |
650 | 2 | 4 |
_aInformation Storage and Retrieval. _923927 |
650 | 2 | 4 |
_aData Analysis and Big Data. _949057 |
710 | 2 |
_aSpringerLink (Online service) _949058 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783030658991 |
776 | 0 | 8 |
_iPrinted edition: _z9783030659011 |
776 | 0 | 8 |
_iPrinted edition: _z9783030659028 |
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-030-65900-4 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c78342 _d78342 |