000 | 04395nam a22005655i 4500 | ||
---|---|---|---|
001 | 978-981-10-8396-9 | ||
003 | DE-He213 | ||
005 | 20220801220952.0 | ||
007 | cr nn 008mamaa | ||
008 | 180316s2018 si | s |||| 0|eng d | ||
020 |
_a9789811083969 _9978-981-10-8396-9 |
||
024 | 7 |
_a10.1007/978-981-10-8396-9 _2doi |
|
050 | 4 | _aQ342 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aTEC009000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
100 | 1 |
_aJoshi, Aditya. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _953407 |
|
245 | 1 | 0 |
_aInvestigations in Computational Sarcasm _h[electronic resource] / _cby Aditya Joshi, Pushpak Bhattacharyya, Mark J. Carman. |
250 | _a1st ed. 2018. | ||
264 | 1 |
_aSingapore : _bSpringer Nature Singapore : _bImprint: Springer, _c2018. |
|
300 |
_aXII, 143 p. 12 illus., 4 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aCognitive Systems Monographs, _x1867-4933 ; _v37 |
|
505 | 0 | _a1. Introduction -- 2. Literature Survey -- 3. Understanding the Phenomenon of Sarcasm -- 4. Sarcasm Detection using Incongruity within Target Text -- 5. Sarcasm Detection using Contextual Incongruity -- 6. Sarcasm Generation -- 7. Conclusion & Future Work. | |
520 | _aThis book describes the authors’ investigations of computational sarcasm based on the notion of incongruity. In addition, it provides a holistic view of past work in computational sarcasm and the challenges and opportunities that lie ahead. Sarcastic text is a peculiar form of sentiment expression and computational sarcasm refers to computational techniques that process sarcastic text. To first understand the phenomenon of sarcasm, three studies are conducted: (a) how is sarcasm annotation impacted when done by non-native annotators? (b) How is sarcasm annotation impacted when the task is to distinguish between sarcasm and irony? And (c) can targets of sarcasm be identified by humans and computers. Following these studies, the book proposes approaches for two research problems: sarcasm detection and sarcasm generation. To detect sarcasm, incongruity is captured in two ways: ‘intra-textual incongruity’ where the authors look at incongruity within the text to be classified (i.e., target text) and ‘context incongruity’ where the authors incorporate information outside the target text. These approaches use machine-learning techniques such as classifiers, topic models, sequence labelling, and word embeddings. These approaches operate at multiple levels: (a) sentiment incongruity (based on sentiment mixtures), (b) semantic incongruity (based on word embedding distance), (c) language model incongruity (based on unexpected language model), (d) author’s historical context (based on past text by the author), and (e) conversational context (based on cues from the conversation). In the second part of the book, the authors present the first known technique for sarcasm generation, which uses a template-based approach to generate a sarcastic response to user input. This book will prove to be a valuable resource for researchers working on sentiment analysis, especially as applied to automation in social media. | ||
650 | 0 |
_aComputational intelligence. _97716 |
|
650 | 0 |
_aNatural language processing (Computer science). _94741 |
|
650 | 0 |
_aSignal processing. _94052 |
|
650 | 1 | 4 |
_aComputational Intelligence. _97716 |
650 | 2 | 4 |
_aNatural Language Processing (NLP). _931587 |
650 | 2 | 4 |
_aSignal, Speech and Image Processing . _931566 |
700 | 1 |
_aBhattacharyya, Pushpak. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _953408 |
|
700 | 1 |
_aCarman, Mark J. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _953409 |
|
710 | 2 |
_aSpringerLink (Online service) _953410 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9789811083952 |
776 | 0 | 8 |
_iPrinted edition: _z9789811083976 |
776 | 0 | 8 |
_iPrinted edition: _z9789811341397 |
830 | 0 |
_aCognitive Systems Monographs, _x1867-4933 ; _v37 _953411 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-981-10-8396-9 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cEBK | ||
999 |
_c79144 _d79144 |