000 03510nam a22006015i 4500
001 978-981-10-4687-2
003 DE-He213
005 20220801221320.0
007 cr nn 008mamaa
008 170927s2018 si | s |||| 0|eng d
020 _a9789811046872
_9978-981-10-4687-2
024 7 _a10.1007/978-981-10-4687-2
_2doi
050 4 _aTA357-359
072 7 _aTGMF
_2bicssc
072 7 _aTEC009070
_2bisacsh
072 7 _aTGMF
_2thema
082 0 4 _a620.1064
_223
100 1 _aDeng, Yongbo.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_955323
245 1 0 _aTopology Optimization Theory for Laminar Flow
_h[electronic resource] :
_bApplications in Inverse Design of Microfluidics /
_cby Yongbo Deng, Yihui Wu, Zhenyu Liu.
250 _a1st ed. 2018.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2018.
300 _aXI, 250 p. 181 illus., 97 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aIntroduction -- Topology optimization for unsteady flows -- Topology optimization for fluid flows with body forces -- Topology optimization for two-phase flows -- Combination of topology optimization and optimal control method -- Inverse design of microfluidics using topology optimization.
520 _aThis book presents the topology optimization theory for laminar flows with low and moderate Reynolds numbers, based on the density method and level-set method, respectively. The density-method-based theory offers efficient convergence, while the level-set-method-based theory can provide anaccurate mathematical expression of the structural boundary. Unsteady, body-force-driven and two-phase properties are basic characteristics of the laminar flows. The book discusses these properties, which are typical of microfluidics and one of the research hotspots in the area of Micro-Electro-Mechanical Systems (MEMS), providing an efficient inverse design approach for microfluidic structures. To demonstrate the applications of this topology optimization theory in the context ofmicrofluidics, it also investigates inverse design for the micromixer, microvalve and micropump, which are key elements in lab-on-chip devices.
650 0 _aFluid mechanics.
_92810
650 0 _aSoft condensed matter.
_917418
650 0 _aMathematical optimization.
_94112
650 0 _aMathematical physics.
_911013
650 0 _aMicrotechnology.
_928219
650 0 _aMicroelectromechanical systems.
_96063
650 1 4 _aEngineering Fluid Dynamics.
_955324
650 2 4 _aSoft and Granular Matter.
_934622
650 2 4 _aOptimization.
_955325
650 2 4 _aTheoretical, Mathematical and Computational Physics.
_931560
650 2 4 _aMicrosystems and MEMS.
_955326
700 1 _aWu, Yihui.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_955327
700 1 _aLiu, Zhenyu.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_955328
710 2 _aSpringerLink (Online service)
_955329
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789811046865
776 0 8 _iPrinted edition:
_z9789811046889
776 0 8 _iPrinted edition:
_z9789811352027
856 4 0 _uhttps://doi.org/10.1007/978-981-10-4687-2
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c79533
_d79533