000 04189nam a22006375i 4500
001 978-4-431-56514-7
003 DE-He213
005 20220801221415.0
007 cr nn 008mamaa
008 180110s2018 ja | s |||| 0|eng d
020 _a9784431565147
_9978-4-431-56514-7
024 7 _a10.1007/978-4-431-56514-7
_2doi
050 4 _aR856-857
072 7 _aMQW
_2bicssc
072 7 _aTEC059000
_2bisacsh
072 7 _aMQW
_2thema
082 0 4 _a610.28
_223
100 1 _aKameo, Yoshitaka.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_955848
245 1 0 _aBone Adaptation
_h[electronic resource] :
_bIn Silico Approach /
_cby Yoshitaka Kameo, Ken-ichi Tsubota, Taiji Adachi.
250 _a1st ed. 2018.
264 1 _aTokyo :
_bSpringer Japan :
_bImprint: Springer,
_c2018.
300 _aXIV, 209 p. 93 illus., 24 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aFrontiers of Biomechanics,
_x2199-8523 ;
_v2
505 0 _aOverview: In Silico Approaches to Understand Bone Adaptation -- Microscopic Fluid Flow Analysis in an Osteocyte Canaliculus -- Macroscopic Fluid Flow Analysis in a Poroelastic Trabecula -- Estimation of Bone Permeability for Poroelastic Analysis -- Modeling Trabecular Bone Adaptation Induced by Flow Stimuli to Osteocytes -- Effects of Local Bending Load on Trabecular Bone Adaptation -- Cancellous Bone Adaptation Predicted by Remodeling Simulations -- Trabecular Surface Remodeling toward Uniform Local Stress State -- Spatial and Temporal Regulation of Cancellous Bone Structure by Trabecular Surface Remodeling -- Comparison of Mechanical Quantities as Bone Remodeling Stimuli -- Trabecular Surface Remodeling Simulation of Cancellous Bone Using Image-Based Voxel Finite Element Models -- Functional Adaptation of Cancellous Bone in Human Proximal Femur -- 3D Trabecular Remodeling in Human Proximal Femur: Approach to Understanding Wolff’s Law -- Trabecular Structural Changes in a Vertebral Body with a Fixation Screw.
520 _aThis book focuses on the systems biomechanics of bone remodeling that provide a multiscale platform for bone adaptation, spanning the cellular, tissue, and organ levels. The mathematical model explained in each section provides concrete examples of in silico approaches for bone adaptation. It will be immensely useful for readers interested in bone morphology and metabolism and will serve as an effective bridge connecting mechanics, cellular and molecular biology, and medical sciences. These in silico approaches towards exploring the mechanisms by which the functioning of dynamic living systems is established and maintained have potential for facilitating the efforts of graduate students and young researchers pioneering new frontiers of biomechanics.
650 0 _aBiomedical engineering.
_93292
650 0 _aOrthopedics.
_933754
650 0 _aBiomathematics.
_95084
650 0 _aBiophysics.
_94093
650 0 _aRegenerative medicine.
_915361
650 0 _aComputer simulation.
_95106
650 1 4 _aBiomedical Engineering and Bioengineering.
_931842
650 2 4 _aOrthopaedics.
_933757
650 2 4 _aMathematical and Computational Biology.
_932033
650 2 4 _aBiophysics.
_94093
650 2 4 _aRegenerative Medicine and Tissue Engineering.
_932772
650 2 4 _aComputer Modelling.
_955849
700 1 _aTsubota, Ken-ichi.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_955850
700 1 _aAdachi, Taiji.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_955851
710 2 _aSpringerLink (Online service)
_955852
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9784431565123
776 0 8 _iPrinted edition:
_z9784431565130
776 0 8 _iPrinted edition:
_z9784431568087
830 0 _aFrontiers of Biomechanics,
_x2199-8523 ;
_v2
_955853
856 4 0 _uhttps://doi.org/10.1007/978-4-431-56514-7
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c79635
_d79635