000 02748nam a22005535i 4500
001 978-3-319-73329-6
003 DE-He213
005 20220801221422.0
007 cr nn 008mamaa
008 180204s2018 sz | s |||| 0|eng d
020 _a9783319733296
_9978-3-319-73329-6
024 7 _a10.1007/978-3-319-73329-6
_2doi
050 4 _aQ342
072 7 _aUYQ
_2bicssc
072 7 _aTEC009000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
100 1 _aBaúto, João.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_955907
245 1 0 _aParallel Genetic Algorithms for Financial Pattern Discovery Using GPUs
_h[electronic resource] /
_cby João Baúto, Rui Neves, Nuno Horta.
250 _a1st ed. 2018.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2018.
300 _aXIV, 91 p. 50 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSpringerBriefs in Computational Intelligence,
_x2625-3712
505 0 _aIntroduction -- State-of-the-Art in Pattern Recognition Techniques -- SAX/GA CPU Approach -- GPU-accelerated SAX/GA -- Conclusions and Future Work in the Field.
520 _aThis Brief presents a study of SAX/GA, an algorithm to optimize market trading strategies, to understand how the sequential implementation of SAX/GA and genetic operators work to optimize possible solutions. This study is later used as the baseline for the development of parallel techniques capable of exploring the identified points of parallelism that simply focus on accelerating the heavy duty fitness function to a full GPU accelerated GA. .
650 0 _aComputational intelligence.
_97716
650 0 _aFinancial engineering.
_955908
650 0 _aSocial sciences—Mathematics.
_931863
650 1 4 _aComputational Intelligence.
_97716
650 2 4 _aFinancial Engineering.
_955909
650 2 4 _aMathematics in Business, Economics and Finance.
_931864
700 1 _aNeves, Rui.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_955910
700 1 _aHorta, Nuno.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_955911
710 2 _aSpringerLink (Online service)
_955912
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783319733289
776 0 8 _iPrinted edition:
_z9783319733302
830 0 _aSpringerBriefs in Computational Intelligence,
_x2625-3712
_955913
856 4 0 _uhttps://doi.org/10.1007/978-3-319-73329-6
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cEBK
999 _c79648
_d79648