000 06165cam a2201093Ii 4500
001 ocn881568749
003 OCoLC
005 20220908100030.0
006 m o d
007 cr mn|||||||||
008 140623t20142014nju ob 001 0 eng d
040 _aEBLCP
_beng
_erda
_epn
_cEBLCP
_dOCLCO
_dIDEBK
_dCDX
_dN$T
_dYDXCP
_dCOO
_dE7B
_dOSU
_dDEBSZ
_dJSTOR
_dOCLCQ
_dRRP
_dDEBBG
_dOCLCQ
_dOCLCF
_dSI#
_dCOCUF
_dOCLCQ
_dUIU
_dWAU
_dOCLCQ
_dOCLCO
_dMOR
_dCCO
_dLIP
_dPIFAG
_dOTZ
_dZCU
_dMERUC
_dOCLCQ
_dIOG
_dDEGRU
_dU3W
_dEZ9
_dUUM
_dSTF
_dICG
_dINT
_dVT2
_dOCLCQ
_dWYU
_dLVT
_dTKN
_dOCLCQ
_dLEAUB
_dDKC
_dOCLCO
_dUKAHL
_dOCLCQ
_dOCLCO
_dOCLCQ
_dREC
_dAUD
_dBRF
_dIEEEE
_dOCLCO
_dSFB
_dOCLCO
019 _a961662213
_a979742471
_a992916641
020 _a9781400852741
_q(electronic book)
020 _a1400852749
_q(electronic book)
020 _z9780691161853
_q(hardcover)
020 _z0691161852
_q(hardcover)
020 _z9781306883382
020 _z1306883385
024 7 _a10.1515/9781400852741
_2doi
024 8 _aebc1689375
029 1 _aAU@
_b000053331003
029 1 _aCHBIS
_b010480532
029 1 _aCHVBK
_b336938934
029 1 _aDEBBG
_bBV042523211
029 1 _aDEBBG
_bBV042989797
029 1 _aDEBBG
_bBV043032428
029 1 _aDEBBG
_bBV043609309
029 1 _aDEBSZ
_b413927369
029 1 _aDEBSZ
_b423086456
029 1 _aDEBSZ
_b429945965
029 1 _aDEBSZ
_b445558741
029 1 _aDEBSZ
_b446781169
029 1 _aGBVCP
_b1003769993
029 1 _aNZ1
_b15910673
029 1 _aAU@
_b000066233641
029 1 _aAU@
_b000066531450
029 1 _aAU@
_b000067109230
029 1 _aDKDLA
_b820120-katalog:999934049805765
035 _a(OCoLC)881568749
_z(OCoLC)961662213
_z(OCoLC)979742471
_z(OCoLC)992916641
037 _a22573/ctt6t46t1
_bJSTOR
037 _a9452663
_bIEEE
050 4 _aQA196
_b.R63 2014
072 7 _aMAT
_x002040
_2bisacsh
072 7 _aMAT040000
_2bisacsh
072 7 _aTEC009000
_2bisacsh
072 7 _aSCI055000
_2bisacsh
072 7 _aMAT005000
_2bisacsh
072 7 _aCOM014000
_2bisacsh
072 7 _aMAT002050
_2bisacsh
082 0 4 _a512.5
_222
084 _aSK 230
_2rvk
049 _aMAIN
100 1 _aRodman, L.,
_eauthor.
_964157
245 1 0 _aTopics in quaternion linear algebra /
_cLeiba Rodman.
264 1 _aPrinceton :
_bPrinceton University Press,
_c[2014]
264 4 _c�2014
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aPrinceton series in applied mathematics
504 _aIncludes bibliographical references and index.
505 0 _aIntroduction -- The algebra of quaternions -- Vector spaces and matrices: basic theory -- Symmetric matrices and congruence -- Invariant subspaces and Jordan form -- Invariant neutral and semidefinite subspaces -- Smith form and Kronecker canonical from -- Pencils of hermitian matrices -- Skewhermitian and mixed pencils -- Indefinite inner products: conjugation -- Matrix pencils with symmetries: nonstandard involution -- Mixed matrix pencils: nonstandard involutions -- Indefinite inner products: nonstandard involution -- Matrix equations -- Appendix: real and complex canonical forms.
520 _aQuaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses or as a basis for a graduate course in linear algebra. The open problems can serve as research projects for undergraduates, topics for graduate students, or problems to be tackled by professional research mathematicians. The book is also an invaluable reference tool for researchers in fields where techniques based on quaternion analysis are used.
546 _aIn English.
588 0 _aPrint version record.
590 _aIEEE
_bIEEE Xplore Princeton University Press eBooks Library
650 0 _aAlgebras, Linear
_vTextbooks.
_918302
650 0 _aQuaternions
_vTextbooks.
_964158
650 7 _aMATHEMATICS
_xAlgebra
_xIntermediate.
_2bisacsh
_964159
650 7 _aMATHEMATICS
_xComplex Analysis.
_2bisacsh
_963863
650 7 _aAlgebras, Linear.
_2fast
_0(OCoLC)fst00804946
_94004
650 7 _aQuaternions.
_2fast
_0(OCoLC)fst01085499
_964160
650 7 _aQuaternionenalgebra
_2gnd
_964161
655 0 _aElectronic books.
_93294
655 4 _aElectronic books.
_93294
655 7 _aTextbooks.
_2fast
_0(OCoLC)fst01423863
_98664
655 7 _aTextbooks.
_2lcgft
_98664
776 0 8 _iPrint version:
_aRodman, L.
_tTopics in quaternion linear algebra.
_dPrinceton : Princeton University Press, [2014]
_z9780691161853
_w(DLC) 2013050581
_w(OCoLC)866766825
830 0 _aPrinceton series in applied mathematics.
_964162
856 4 0 _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9452663
938 _aAskews and Holts Library Services
_bASKH
_nAH26887988
938 _aCoutts Information Services
_bCOUT
_n28515993
938 _aDe Gruyter
_bDEGR
_n9781400852741
938 _aEBL - Ebook Library
_bEBLB
_nEBL1689375
938 _aebrary
_bEBRY
_nebr10884735
938 _aEBSCOhost
_bEBSC
_n778846
938 _aProQuest MyiLibrary Digital eBook Collection
_bIDEB
_ncis28515993
938 _aYBP Library Services
_bYANK
_n11898419
942 _cEBK
994 _a92
_bINTKS
999 _c81259
_d81259