000 05839cam a2200901Ii 4500
001 ocn906575019
003 OCoLC
005 20220908100041.0
006 m o d
007 cr mn|||||||||
008 150406t20152015nju ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dN$T
_dIDEBK
_dE7B
_dOSU
_dYDXCP
_dCOO
_dCDX
_dEBLCP
_dDEBSZ
_dOCLCF
_dJSTOR
_dDEBBG
_dMERUC
_dIDB
_dUIU
_dCOCUF
_dK6U
_dCCO
_dPIFAG
_dFVL
_dOTZ
_dZCU
_dOCLCQ
_dLGG
_dIOG
_dU3W
_dEZ9
_dUUM
_dSTF
_dICG
_dINT
_dVT2
_dOCLCQ
_dWYU
_dLVT
_dTKN
_dOCLCQ
_dDKC
_dOCLCQ
_dUKAHL
_dOCLCQ
_dSFB
_dIEEEE
_dOCLCO
_dS2H
_dOCLCO
066 _c(S
019 _a908080604
_a1055345157
_a1066456833
020 _a9781400866618
_q(electronic bk.)
020 _a1400866618
_q(electronic bk.)
020 _z9780691164502
020 _z0691164509
029 1 _aAU@
_b000054852735
029 1 _aDEBBG
_bBV042988299
029 1 _aDEBBG
_bBV043617235
029 1 _aDEBBG
_bBV043719450
029 1 _aDEBSZ
_b43394708X
029 1 _aDEBSZ
_b453328199
029 1 _aGBVCP
_b834643839
029 1 _aAU@
_b000063661357
029 1 _aDKDLA
_b820120-katalog:999933630805765
035 _a(OCoLC)906575019
_z(OCoLC)908080604
_z(OCoLC)1055345157
_z(OCoLC)1066456833
037 _a22573/ctt1b9wf38
_bJSTOR
037 _a9452421
_bIEEE
050 4 _aQA614.83
072 7 _aMAT
_x005000
_2bisacsh
072 7 _aMAT
_x034000
_2bisacsh
072 7 _aMAT000000
_2bisacsh
072 7 _aMAT003000
_2bisacsh
082 0 4 _a515/.39
_223
049 _aMAIN
100 1 _aSorrentino, Alfonso,
_d1979-
_eauthor.
_964326
245 1 0 _aAction-minimizing methods in Hamiltonian dynamics :
_ban introduction to Aubry-Mather theory /
_cAlfonso Sorrentino.
264 1 _aPrinceton :
_bPrinceton University Press,
_c[2015]
264 4 _c�2015
300 _a1 online resource (xi, 115 pages)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aMathematical notes ;
_v50
504 _aIncludes bibliographical references and index.
588 0 _aPrint version record.
505 8 _6880-01
_a3.6 Holonomic Measures and Generic Properties of Tonelli Lagrangians4 Action-Minimizing Curves for Tonelli Lagrangians; 4.1 Global Action-Minimizing Curves: Aubry and Ma�n�e Sets; 4.2 Some Topological and Symplectic Properties of the Aubry and Ma�n�e Sets; 4.3 An Example: The Simple Pendulum (Part II); 4.4 Mather's Approach: Peierls' Barrier; 5 The Hamilton-Jacobi Equation and Weak KAM Theory; 5.1 Weak Solutions and Subsolutions of Hamilton-Jacobi and Fathi's Weak KAM theory; 5.2 Regularity of Critical Subsolutions; 5.3 Non-Wandering Points of the Ma�n�e Set; Appendices.
505 8 _aA On the Existence of Invariant Lagrangian GraphsA. 1 Symplectic Geometry of the Phase Space; A.2 Existence and Nonexistence of Invariant Lagrangian Graphs; B Schwartzman Asymptotic Cycle and Dynamics; B.1 Schwartzman Asymptotic Cycle; B.2 Dynamical Properties; Bibliography; Index.
520 _aJohn Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach-known as Aubry-Mather theory-singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather's theory, and can serve as an interdisciplinary bridge for researchers and students from different fields seeking to acquaint themselves with the topic.
590 _aIEEE
_bIEEE Xplore Princeton University Press eBooks Library
650 0 _aHamiltonian systems.
_912039
650 0 _aHamilton-Jacobi equations.
_964327
650 6 _aSyst�emes hamiltoniens.
_964328
650 6 _a�Equations de Hamilton-Jacobi.
_964329
650 7 _aMATHEMATICS
_xCalculus.
_2bisacsh
_916300
650 7 _aMATHEMATICS
_xMathematical Analysis.
_2bisacsh
_916301
650 7 _aMATHEMATICS
_xGeneral.
_2bisacsh
_94635
650 7 _aHamilton-Jacobi equations.
_2fast
_0(OCoLC)fst00950768
_964327
650 7 _aHamiltonian systems.
_2fast
_0(OCoLC)fst00950772
_912039
655 0 _aElectronic book.
_97794
655 4 _aElectronic books.
_93294
655 7 _aElectronic books.
_2lcgft
_93294
776 0 8 _iPrint version:
_aSorrentino, Alfonso.
_tAction-minimizing Methods in Hamiltonian Dynamics: An Introduction to Aubry-Mather Theory.
_dPrinceton : Princeton University Press, �2015
_z9780691164502
830 0 _aMathematical notes (Princeton University Press) ;
_v50.
_964330
856 4 0 _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9452421
880 0 _6505-01/(S
_aCover; Copyright; Title; Contents; Preface; 1 Tonelli Lagrangians and Hamiltonians on Compact Manifolds; 1.1 Lagrangian Point of View; 1.2 Hamiltonian Point of View; 2 From KAM Theory to Aubry-Mather Theory; 2.1 Action-Minimizing Properties of Measures and Orbits on KAM Tori; 3 Action-Minimizing Invariant Measures for Tonelli Lagrangians; 3.1 Action-Minimizing Measures and Mather Sets; 3.2 Mather Measures and Rotation Vectors; 3.3 Mather's (Sa(B- and (Sb(B-Functions ; 3.4 The Symplectic Invariance of Mather Sets; 3.5 An Example: The Simple Pendulum (Part I).
938 _aAskews and Holts Library Services
_bASKH
_nAH28550192
938 _aCoutts Information Services
_bCOUT
_n31091161
938 _aEBL - Ebook Library
_bEBLB
_nEBL1929549
938 _aebrary
_bEBRY
_nebr11040168
938 _aEBSCOhost
_bEBSC
_n943074
938 _aProQuest MyiLibrary Digital eBook Collection
_bIDEB
_ncis31091161
938 _aYBP Library Services
_bYANK
_n12341126
942 _cEBK
994 _a92
_bINTKS
999 _c81280
_d81280