000 | 05913cam a2200901Ii 4500 | ||
---|---|---|---|
001 | ocn933388580 | ||
003 | OCoLC | ||
005 | 20220908100104.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 151223s2016 nju ob 001 0 eng d | ||
040 |
_aN$T _beng _erda _epn _cN$T _dIDEBK _dYDXCP _dN$T _dEBLCP _dJSTOR _dOCLCF _dCDX _dDEBBG _dCOO _dCCO _dCOCUF _dLOA _dMERUC _dAGLDB _dICA _dPIFAG _dFVL _dYDX _dBAB _dZCU _dOCLCQ _dCUY _dOCLCQ _dU3G _dNJR _dDEGRU _dB3G _dI9W _dI8H _dIL4I4 _dU3W _dOCLCQ _dD6H _dEZ9 _dOCLCQ _dWRM _dSTF _dOCLCQ _dVTS _dICG _dVT2 _dOCLCQ _dWYU _dTKN _dLEAUB _dDKC _dOCLCQ _dM8D _dUKAHL _dOCLCQ _dSFB _dOCLCQ _dAUD _dMM9 _dIEEEE _dCN6UV _dOCLCO |
||
066 | _c(S | ||
019 |
_a957614707 _a979911327 _a992820386 _a1055393170 _a1066453457 |
||
020 |
_a9781400881222 _q(electronic bk.) |
||
020 |
_a1400881226 _q(electronic bk.) |
||
020 | _a0691161682 | ||
020 | _a9780691161686 | ||
020 | _a0691161690 | ||
020 | _a9780691161693 | ||
024 | 7 |
_a10.1515/9781400881222 _2doi |
|
029 | 1 |
_aCHBIS _b010896083 |
|
029 | 1 |
_aCHVBK _b483388718 |
|
029 | 1 |
_aDEBBG _bBV043599261 |
|
029 | 1 |
_aDEBSZ _b489853277 |
|
029 | 1 |
_aAU@ _b000057033082 |
|
029 | 1 |
_aDKDLA _b820120-katalog:999935486505765 |
|
035 |
_a(OCoLC)933388580 _z(OCoLC)957614707 _z(OCoLC)979911327 _z(OCoLC)992820386 _z(OCoLC)1055393170 _z(OCoLC)1066453457 |
||
037 |
_a22573/ctt193cj76 _bJSTOR |
||
037 |
_a9452405 _bIEEE |
||
050 | 4 |
_aQA251.5 _b.H78 2016eb |
|
072 | 7 |
_aMAT _x002040 _2bisacsh |
|
072 | 7 |
_aMAT038000 _2bisacsh |
|
072 | 7 |
_aMAT000000 _2bisacsh |
|
072 | 7 |
_aMAT012010 _2bisacsh |
|
072 | 7 |
_aMAT012020 _2bisacsh |
|
082 | 0 | 4 |
_a512./4 _223 |
084 |
_aSI 830 _2rvk |
||
049 | _aMAIN | ||
100 | 1 |
_aHrushovski, Ehud, _d1959- _eauthor. _964664 |
|
245 | 1 | 0 |
_aNon-archimedean tame topology and stably dominated types / _cEhud Hrushovski, Fran�cois Loeser. |
264 | 1 |
_aPrinceton : _bPrinceton University Press, _c2016. |
|
264 | 4 | _c�2016 | |
300 | _a1 online resource (vii, 216 pages) | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aAnnals of mathematics studies ; _vnumber 192 |
|
504 | _aIncludes bibliographical references (pages 207-210) and index. | ||
588 | 0 | _aVendor-supplied metadata. | |
520 | _aOver the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry. This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness. Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods. No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections. | ||
546 | _aIn English. | ||
505 | 0 | 0 |
_6880-01 _tFrontmatter -- _tContents -- _t1. Introduction -- _t2. Preliminaries -- _t3. The space �v of stably dominated types -- _t4. Definable compactness -- _t5. A closer look at the stable completion -- _t6. [Gamma]-internal spaces -- _t7. Curves -- _t8. Strongly stably dominated points -- _t9. Specializations and ACV2F -- _t10. Continuity of homotopies -- _t11. The main theorem -- _t12. The smooth case -- _t13. An equivalence of categories -- _t14. Applications to the topology of Berkovich spaces -- _tBibliography -- _tIndex -- _tList of notations. |
590 |
_aIEEE _bIEEE Xplore Princeton University Press eBooks Library |
||
650 | 0 |
_aTame algebras. _964665 |
|
650 | 6 |
_aAlg�ebres r�eguli�eres. _964666 |
|
650 | 7 |
_aMATHEMATICS _xAlgebra _xIntermediate. _2bisacsh _964159 |
|
650 | 7 |
_aMATHEMATICS _xTopology. _2bisacsh _914301 |
|
650 | 7 |
_aTame algebras. _2fast _0(OCoLC)fst01142421 _964665 |
|
655 | 0 |
_aElectronic book. _97794 |
|
655 | 4 |
_aElectronic books. _93294 |
|
655 | 7 |
_aElectronic books. _2lcgft _93294 |
|
700 | 1 |
_aLoeser, Fran�cois, _eauthor. _964667 |
|
776 | 0 | 8 |
_iPrint version: _z9780691161686 |
830 | 0 |
_aAnnals of mathematics studies ; _vno. 192. _964668 |
|
856 | 4 | 0 | _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9452405 |
880 | 0 | 0 |
_6505-01/(S _tFrontmatter -- _tContents -- _t1. Introduction -- _t2. Preliminaries -- _t3. The space �v of stably dominated types -- _t4. Definable compactness -- _t5. A closer look at the stable completion -- _t6. (SD(B-internal spaces -- _t7. Curves -- _t8. Strongly stably dominated points -- _t9. Specializations and ACV2F -- _t10. Continuity of homotopies -- _t11. The main theorem -- _t12. The smooth case -- _t13. An equivalence of categories -- _t14. Applications to the topology of Berkovich spaces -- _tBibliography -- _tIndex -- _tList of notations. |
938 |
_aAskews and Holts Library Services _bASKH _nAH29979686 |
||
938 |
_aCoutts Information Services _bCOUT _n33383068 |
||
938 |
_aDe Gruyter _bDEGR _n9781400881222 |
||
938 |
_aEBL - Ebook Library _bEBLB _nEBL4198288 |
||
938 |
_aEBSCOhost _bEBSC _n1090926 |
||
938 |
_aProQuest MyiLibrary Digital eBook Collection _bIDEB _ncis33383068 |
||
938 |
_aYBP Library Services _bYANK _n12759013 |
||
942 | _cEBK | ||
994 |
_a92 _bINTKS |
||
999 |
_c81327 _d81327 |