000 07875cam a2200949 i 4500
001 ocn946038714
003 OCoLC
005 20220908100109.0
006 m o d
007 cr cnu||||||||
008 160406s2016 njua ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dOCLCO
_dIDEBK
_dYDXCP
_dEBLCP
_dCDX
_dDEBBG
_dYDX
_dIDB
_dZAD
_dUAB
_dNRC
_dOCLCQ
_dTEFOD
_dDEGRU
_dMERUC
_dOCLCF
_dUUM
_dOCLCQ
_dINT
_dAU@
_dOCLCQ
_dWYU
_dOCLCQ
_dJSTOR
_dUKAHL
_dOCLCQ
_dKNOVL
_dOCLCQ
_dIEEEE
_dOCLCQ
_dOCLCO
066 _c(S
019 _a960712562
_a961928898
_a965145978
_a966594319
_a976250179
_a978381889
_a978722922
_a978993862
_a984657336
_a991092246
_a1002529677
_a1003097266
_a1028069202
_a1031224036
020 _a9781400882823
_q(electronic bk.)
020 _a1400882826
_q(electronic bk.)
020 _a9781523124589
_q(electronic bk.)
020 _a152312458X
_q(electronic bk.)
020 _z9780691170602
020 _z0691170606
024 8 _a12835842
024 7 _a10.1515/9781400882823
_2doi
029 1 _aDEBBG
_bBV043629391
029 1 _aGBVCP
_b871509849
029 1 _aDEBBG
_bBV043867671
029 1 _aAU@
_b000062362236
035 _a(OCoLC)946038714
_z(OCoLC)960712562
_z(OCoLC)961928898
_z(OCoLC)965145978
_z(OCoLC)966594319
_z(OCoLC)976250179
_z(OCoLC)978381889
_z(OCoLC)978722922
_z(OCoLC)978993862
_z(OCoLC)984657336
_z(OCoLC)991092246
_z(OCoLC)1002529677
_z(OCoLC)1003097266
_z(OCoLC)1028069202
_z(OCoLC)1031224036
037 _a4454961
_bProquest Ebook Central
037 _aFE73C06A-2E67-477F-A224-FDA56F3BB0D8
_bOverDrive, Inc.
_nhttp://www.overdrive.com
037 _a22573/ctvc66w1x
_bJSTOR
037 _a9452491
_bIEEE
050 4 _aQC809.M37
_bN49 2016eb
072 7 _aMAT000000
_2bisacsh
072 7 _aSCI004000
_2bisacsh
072 7 _aSCI005000
_2bisacsh
072 7 _aSCI019000
_2bisacsh
072 7 _aSCI032000
_2bisacsh
072 7 _aSCI040000
_2bisacsh
072 7 _aMAT
_x000000
_2bisacsh
072 7 _aSCI
_x004000
_2bisacsh
072 7 _aSCI
_x005000
_2bisacsh
072 7 _aSCI
_x019000
_2bisacsh
072 7 _aSCI
_x032000
_2bisacsh
072 7 _aSCI
_x040000
_2bisacsh
082 0 4 _a520.1/51
_223
049 _aMAIN
100 1 _aNewman, William I.,
_eauthor.
_964742
245 1 0 _aMathematical methods for geophysics and space physics /
_cWilliam I. Newman.
264 1 _aPrinceton, New Jersey ;
_aOxford :
_bPrinceton University Press,
_c[2016]
264 4 _c�2016
300 _a1 online resource (xiv, 250 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _bPDF
347 _atext file
504 _aIncludes bibliographical references and index.
588 0 _aPrint version record.
505 0 _aMathematical preliminaries -- Ordinary differential equations -- Evaluation of integrals and integral transform methods -- Partial differential equations of mathematical geophysics -- Probability, statistics, and computational methods.
520 _aGraduate students in the natural sciences--including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy--need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. Provides an authoritative and accessible introduction to the subject Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics Features numerous exercises throughout Ideal for students and researchers alike An online illustration package is available to professors.
546 _aIn English.
590 _aIEEE
_bIEEE Xplore Princeton University Press eBooks Library
650 0 _aGeophysics
_xMathematics.
_964743
650 0 _aCosmic physics
_xMathematics.
_964744
650 6 _aG�eophysique
_xMath�ematiques.
_964745
650 6 _aPhysique spatiale
_xMath�ematiques.
_964746
650 7 _aMATHEMATICS
_xGeneral.
_2bisacsh
_94635
650 7 _aGeophysics
_xMathematics.
_2fast
_0(OCoLC)fst00941023
_964743
655 4 _aElectronic books.
_93294
776 0 8 _iPrint version:
_aNewman, William I.
_tMathematical methods for geophysics and space physics.
_dPrinceton, New Jersey ; Oxford : Princeton University Press, [2016]
_z9780691170602
_w(DLC) 2015040966
_w(OCoLC)930462870
856 4 0 _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9452491
880 0 _6505-00/(S
_aCover -- Title -- Copyright -- Contents -- Preface -- 1 Mathematical Preliminaries -- 1.1 Vectors, Indicial Notation, and Vector Operators -- 1.2 Cylindrical and Spherical Geometry -- 1.3 Theorems of Gauss, Green, and Stokes -- 1.4 Rotation and Matrix Representation -- 1.5 Tensors, Eigenvalues, and Eigenvectors -- 1.6 Ramp, Heaviside, and Dirac (Se (BFunctions -- 1.7 Exercises -- 2 Ordinary Differential Equations -- 2.1 Linear First-Order Ordinary Differential Equations -- 2.2 Second-Order Ordinary Differential Equations -- 2.2.1 Linear Second-Order Differential Equations -- 2.2.2 Green's Functions -- 2.2.3 LRC Circuits and Visco-Elastic Solids -- 2.2.4 Driven Oscillators, Resonance, and Variation of Constants -- 2.2.5 JWKB Method, Riccati Equation, and Adiabatic Invariants -- 2.2.6 Nonlinearity and Perturbation Theory -- 2.3 Special Functions, Laplacians, and Separation of Variables -- 2.3.1 Cartesian Coordinates and Separation of Variables -- 2.3.2 Polar and Cylindrical Coordinates and Separation of Variables -- Bessel and Generating Functions -- 2.3.3 Spherical Coordinates and Separation of Variables -- Green's and Generating Function -- Spherical Harmonics -- 2.4 Nonlinear Ordinary Differential Equations -- 2.4.1 Bullard's Homopolar Dynamo -- 2.4.2 Poincar�e-Bendixson Theorem and the Van der Pol Oscillator -- 2.4.3 Lorenz Attractor, Perturbation Theory, and Chaos -- 2.4.4 Fractals -- 2.4.5 Maps and Period Doubling -- 2.5 Exercises -- 3 Evaluation of Integrals and Integral Transform Methods -- 3.1 Integration Methods, Approximations, and Special Cases -- 3.1.1 Elementary Methods and Asymptotic Methods -- 3.1.2 Steepest Descent Methods -- 3.1.3 Special Problems in Geophysics -- Elliptic Integrals -- 3.2 Complex Analysis and Elementary Contour Integration -- 3.3 Fourier Transforms and Analysis Methods.
938 _aAskews and Holts Library Services
_bASKH
_nAH31319085
938 _aEBSCOhost
_bEBSC
_n1216301
938 _aProQuest MyiLibrary Digital eBook Collection
_bIDEB
_ncis34321328
938 _aYBP Library Services
_bYANK
_n12941775
938 _aEBL - Ebook Library
_bEBLB
_nEBL4454961
938 _aCoutts Information Services
_bCOUT
_n34321328
938 _aDe Gruyter
_bDEGR
_n9781400882823
942 _cEBK
994 _a92
_bINTKS
999 _c81338
_d81338