000 05704cam a2200889 i 4500
001 on1066741225
003 OCoLC
005 20220908100150.0
006 m o d
007 cr cnu|||unuuu
008 181121s2019 nju ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dEBLCP
_dN$T
_dOCLCF
_dJSTOR
_dYDX
_dUKOUP
_dOH1
_dUKAHL
_dOCLCQ
_dOCL
_dIEEEE
_dOCLCQ
_dOCLCO
019 _a1096512940
020 _a9780691188997
_q(electronic bk.)
020 _a0691188998
_q(electronic bk.)
020 _z9780691181370
020 _z0691181373
020 _z9780691181387
020 _z0691181381
029 1 _aAU@
_b000065084178
035 _a(OCoLC)1066741225
_z(OCoLC)1096512940
037 _a22573/ctv5rnhk3
_bJSTOR
037 _a9452377
_bIEEE
050 4 _aQA614.8
_b.S39 2019
050 4 _aQA853
_b.S39 2019
072 7 _aMAT
_x039000
_2bisacsh
072 7 _aMAT
_x023000
_2bisacsh
072 7 _aMAT
_x026000
_2bisacsh
072 7 _aMAT
_x012000
_2bisacsh
072 7 _aMAT
_x022000
_2bisacsh
072 7 _aMAT
_x036000
_2bisacsh
082 0 4 _a515/.39
_223
049 _aMAIN
100 1 _aSchwartz, Richard Evan,
_eauthor.
_965242
245 1 4 _aThe plaid model /
_cRichard Evan Schwartz.
264 1 _aPrinceton, New Jersey :
_bPrinceton University Press,
_c[2019]
264 4 _c�2019
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aAnnals of mathematics studies ;
_vNumber 198
504 _aIncludes bibliographical references and index.
588 0 _aVendor-supplied metadata.
505 0 0 _gFrontmatter -- Contents -- Preface -- Introduction -- Part 1.
_tThe plaid model --
_gChapter 1.
_tDefinition of the plaid model --
_gChapter 2.
_tProperties of the model --
_gChapter 3.
_tUsing the model --
_gChapter 4.
_tParticles and spacetime diagrams --
_gChapter 5.
_tThree-dimensional interpretation --
_gChapter 6.
_tPixellation and curve turning --
_gChapter 7.
_tConnection to the Truchet tile system --
_gPart 2.
_tThe plaid PET --
_gChapter 8.
_tThe plaid master picture theorem --
_gChapter 9.
_tThe segment lemma --
_gChapter 10.
_tThe vertical lemma --
_gChapter 11.
_tThe horizontal lemma --
_gChapter 12.
_tProof of the main result --
_gPart 3.
_tThe graph PET --
_gChapter 13.
_tGraph master picture theorem --
_gChapter 14.
_tPinwheels and quarter turns --
_gChapter 15.
_tQuarter turn compositions and PETs --
_gChapter 16.
_tThe nature of the compactification --
_gPart 4.
_tThe plaid-graph correspondence --
_gChapter 17.
_tThe orbit equivalence theorem --
_gChapter 18.
_tThe quasi-isomorphism theorem --
_gChapter 19.
_tGeometry of the graph grid --
_gChapter 20.
_tThe intertwining lemma --
_gPart 5.
_tThe distribution of orbits --
_gChapter 21.
_tExistence of infinite orbits --
_gChapter 22.
_tExistence of many large orbits --
_gChapter 23.
_tInfinite orbits revisited --
_gChapter 24.
_tSome elementary number theory --
_gChapter 25.
_tThe weak and strong case --
_gChapter 26.
_tThe core case --
_gReferences -- Index.
520 8 _aOuter billiards provides a toy model for planetary motion and exhibits intricate and mysterious behaviour even for simple examples. It is a dynamical system in which a particle in the plane moves around the outside of a convex shape according to a scheme that is reminiscent of billiards. 'The Plaid Model', which is a self-contained sequel to Schwartz's 'Outer Billiards on Kites', provides a combinatorial model for orbits of outer billiards on kites. The combinatorial model, called 'the plaid model', has a self-similar structure that blends geometry and elementary number theory. The results were discovered through computer experimentation and it seems that the conclusions would be very difficult to reach through traditional maths. The work includes an extensive computer program that allows readers to explore the materials interactively and each theorem is accompanied by a computer demonstration.
590 _aIEEE
_bIEEE Xplore Princeton University Press eBooks Library
650 0 _aDifferentiable dynamical systems.
_920832
650 0 _aCombinatorial dynamics.
_965243
650 0 _aGeometry.
_921224
650 0 _aNumber theory.
_913208
650 6 _aDynamique diff�erentiable.
_963691
650 6 _aOrbites p�eriodiques (Math�ematiques)
_965244
650 6 _aG�eom�etrie.
_965245
650 6 _aTh�eorie des nombres.
_964750
650 7 _ageometry.
_2aat
_921224
650 7 _aMATHEMATICS
_xEssays.
_2bisacsh
_964120
650 7 _aMATHEMATICS
_xPre-Calculus.
_2bisacsh
_964121
650 7 _aMATHEMATICS
_xReference.
_2bisacsh
_964122
650 7 _aMATHEMATICS
_xGeometry
_xGeneral.
_2bisacsh
_97661
650 7 _aNumber theory.
_2fast
_0(OCoLC)fst01041214
_913208
650 7 _aGeometry.
_2fast
_0(OCoLC)fst00940864
_921224
650 7 _aDifferentiable dynamical systems.
_2fast
_0(OCoLC)fst00893426
_920832
650 7 _aCombinatorial dynamics.
_2fast
_0(OCoLC)fst00868969
_965243
650 7 _aMathematics.
_2fast
_0(OCoLC)fst01012163
_911584
655 4 _aElectronic books.
_93294
776 0 8 _iPrint version:
_aSchwartz, Richard Evan.
_tPlaid model.
_dPrinceton, New Jersey : Princeton University Press, [2019]
_z9780691181370
_z0691181373
_w(OCoLC)1051133975
830 0 _aAnnals of mathematics studies ;
_vno. 198.
_965246
856 4 0 _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9452377
938 _aAskews and Holts Library Services
_bASKH
_nAH35690461
938 _aProQuest Ebook Central
_bEBLB
_nEBL5598243
938 _aEBSCOhost
_bEBSC
_n1898630
938 _aOxford University Press USA
_bOUPR
_nEDZ0002090788
938 _aYBP Library Services
_bYANK
_n15818264
942 _cEBK
994 _a92
_bINTKS
999 _c81424
_d81424