000 04194cam a2200661 i 4500
001 on1103440222
003 OCoLC
005 20220908100157.0
006 m o d
007 cr cnu---unuuu
008 190604s2019 njua ob 001 0 eng d
040 _aN$T
_beng
_erda
_epn
_cN$T
_dN$T
_dDEGRU
_dOCLCF
_dBRX
_dJSTOR
_dYDX
_dUKAHL
_dCNO
_dIEEEE
_dOCLCQ
_dOCLCO
020 _a9780691189390
_q(electronic bk.)
020 _a0691189390
_q(electronic bk.)
020 _z9780691161525
029 1 _aAU@
_b000065930108
035 _a(OCoLC)1103440222
037 _a22573/ctvc3fzms
_bJSTOR
037 _a9453369
_bIEEE
050 4 _aQA614.86
_b.F45 2019eb
072 7 _aMAT
_x038000
_2bisacsh
072 7 _aMAT
_x000000
_2bisacsh
072 7 _aMAT
_x040000
_2bisacsh
072 7 _aSCI
_x012000
_2bisacsh
082 0 4 _a514.742
_223
049 _aMAIN
100 1 _aFeldman, David P.,
_eauthor.
_965336
245 1 0 _aChaos and dynamical systems /
_cDavid P. Feldman.
264 1 _aPrinceton :
_bPrinceton University Press,
_c2019.
300 _a1 online resource (xiv, 245 pages) :
_billustrations
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
490 1 _aPrimers in complex systems
588 0 _aOnline resource; title from PDF title page (EBSCO, viewed June 5, 2019)
504 _aIncludes bibliographical references and index.
505 0 0 _tFrontmatter --
_tCONTENTS --
_tPreface --
_t1. Introducing Iterated Functions --
_t2. Introducing Differential Equations --
_t3. Interlude: Mathematical Models and the Newtonian Worldview --
_t4. Chaos I:The Butterfly Effect --
_t5. Chaos II: Deterministic Randomness --
_t6. Bifurcations: Sudden Transitions --
_t7. Universality in Chaos --
_t8. Higher-Dimensional Systems and Phase Space --
_t9. Strange Attractors --
_t10. Conclusion --
_tBibliography --
_tIndex
520 _aChaos and Dynamical Systems presents an accessible, clear introduction to dynamical systems and chaos theory, an important and exciting area that has shaped many scientific fields. While the rules governing dynamical systems are well-specified and simple, the behavior of many dynamical systems is remarkably complex. Of particular note, simple deterministic dynamical systems produce output that appears random and for which long-term prediction is impossible. Using little math beyond basic algebra, David Feldman gives readers a grounded, concrete, and concise overview. In initial chapters, Feldman introduces iterated functions and differential equations. He then surveys the key concepts and results to emerge from dynamical systems: chaos and the butterfly effect, deterministic randomness, bifurcations, universality, phase space, and strange attractors. Throughout, Feldman examines possible scientific implications of these phenomena for the study of complex systems, highlighting the relationships between simplicity and complexity, order and disorder. Filling the gap between popular accounts of dynamical systems and chaos and textbooks aimed at physicists and mathematicians, Chaos and Dynamical Systems will be highly useful not only to students at the undergraduate and advanced levels, but also to researchers in the natural, social, and biological sciences.
590 _aIEEE
_bIEEE Xplore Princeton University Press eBooks Library
650 0 _aFractals.
_910012
650 0 _aChaotic behavior in systems.
_94594
650 6 _aFractales.
_965337
650 6 _aChaos.
_965338
650 7 _afractals.
_2aat
_910012
650 7 _aMATHEMATICS
_xTopology.
_2bisacsh
_914301
650 7 _aMATHEMATICS
_xGeneral.
_2bisacsh
_94635
650 7 _aChaotic behavior in systems.
_2fast
_0(OCoLC)fst00852171
_94594
650 7 _aFractals.
_2fast
_0(OCoLC)fst00933507
_910012
655 4 _aElectronic books.
_93294
830 0 _aPrimers in complex systems.
_964911
856 4 0 _uhttps://ieeexplore.ieee.org/servlet/opac?bknumber=9453369
938 _aAskews and Holts Library Services
_bASKH
_nAH36380104
938 _aDe Gruyter
_bDEGR
_n9780691189390
938 _aEBSCOhost
_bEBSC
_n2024426
938 _aYBP Library Services
_bYANK
_n16161183
942 _cEBK
994 _a92
_bINTKS
999 _c81442
_d81442