000 | 11469cam a2200565 a 4500 | ||
---|---|---|---|
001 | on1265524104 | ||
003 | OCoLC | ||
005 | 20230516165949.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 210829s2021 enk ob 001 0 eng d | ||
040 |
_aYDX _beng _epn _cYDX _dOPELS _dOCLCO _dUKMGB _dOCLCF _dUKAHL _dOCLCQ _dAFU _dOCLCO _dK6U _dSFB _dOCLCQ |
||
015 |
_aGBC1B8942 _2bnb |
||
016 | 7 |
_a020273282 _2Uk |
|
019 |
_a1287269247 _a1287875147 |
||
020 |
_a9780128230909 _q(electronic bk.) |
||
020 |
_a0128230908 _q(electronic bk.) |
||
020 | _z0128229063 | ||
020 | _z9780128229064 | ||
035 |
_a(OCoLC)1265524104 _z(OCoLC)1287269247 _z(OCoLC)1287875147 |
||
050 | 4 |
_aTA418.9.N35 _bC45 2021 |
|
082 | 0 | 4 |
_a620.115 _223 |
245 | 0 | 0 |
_aCellulose nanocrystal/nanoparticles hybrid nanocomposites : _bfrom preparation to applications / _cedited by Denis Rodrigue, Abou el Kacem Qaiss and Rachid Bouhfid. |
264 | 1 |
_aLondon : _bWoodhead Publishing, _c2021. |
|
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
336 |
_astill image _bsti _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
490 | 1 | _aWoodhead Publishing series in composites science and engineering | |
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aIntro -- Cellulose Nanocrystal/Nanoparticles Hybrid Nanocomposites: From Preparation to Applications -- Copyright -- Contents -- Contributors -- Chapter 1: Cellulose nanocrystal/nanoparticles hybrid nanocomposites: From preparation to applications -- 1.1. Introduction -- 1.2. Cellulose nanocrystal: Structure, source, and properties -- 1.3. Production of cellulose nanocrystals -- 1.4. Cellulose nanocrystal/nanoparticles hybrid nanocomposites -- 1.5. Conclusion -- References -- Chapter 2: Characterization techniques for hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and nanopart ... -- 2.1. Introduction -- 2.2. Cellulose: Chemical structure, properties, and application -- 2.3. Characterization of cellulose-based hybrid nanocomposites -- 2.3.1. Structural characterization -- 2.3.1.1. Fourier transform infrared (FTIR) -- 2.3.1.2. Raman spectroscopy -- 2.3.1.3. X-ray photoelectron spectroscopy (XPS) -- 2.3.1.4. UV-Vis spectroscopy -- 2.3.1.5. Nuclear magnetic resonance (NMR) -- 2.3.1.6. X-ray diffraction (XRD) -- 2.3.2. Morphological characterization -- 2.3.2.1. Scanning electron microscopy (SEM) -- 2.3.2.2. Atomic force microscopy (AFM) -- 2.3.2.3. Transmission electron microscopy (TEM) -- 2.3.3. Thermal properties -- 2.3.3.1. Thermogravimetric analysis (TGA) -- 2.3.3.2. Differential scanning calorimetry (DSC) -- 2.3.4. Mechanical properties -- 2.3.5. Dynamic mechanical analysis (DMA) -- 2.4. Conclusion -- References -- Chapter 3: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and carbon nanotubes: From preparation to ap ... -- 3.1. Introduction -- 3.2. Thermoplastic polyurethanes -- 3.3. Flexible sensors -- 3.4. Adsorption -- 3.5. Optoelectronic applications -- 3.6. Wearable electronic devices -- 3.7. Supercapacitors -- 3.8. Soy proteins reinforcement -- 3.9. Conclusion -- References. | |
505 | 8 | _aChapter 4: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and silver nanoparticles: Antibacterial appl ... -- 4.1. Introduction -- 4.1.1. Nanocellulose from ligno-cellulosic materials -- 4.1.2. Bacterial cellulose -- 4.2. Antibacterial properties of nanosilver -- 4.3. Application of nanosilver on nanocellulose -- 4.4. Novel preparation methods for improved biocompatibility -- 4.5. Conclusions -- References -- Chapter 5: Hybrid materials from cellulose nanocrystals for wastewater treatment -- 5.1. Introduction -- 5.2. Cellulose nanocrystals generalities: From synthesis to application as a potential adsorbent in wastewater treatment ... -- 5.2.1. Synthesis, structure, and morphology -- 5.2.2. Cellulose nanocrystals as a potential adsorbent in wastewater treatment -- 5.3. Hybrid materials from cellulose nanocrystals for wastewater treatment -- 5.3.1. CNC/polymer hybrid materials -- 5.3.2. CNC/metal or metal oxide hybrid materials -- 5.3.3. CNC/magnetic hybrid materials -- 5.3.4. CNC/carbonaceous hybrid materials -- 5.4. Conclusion -- References -- Chapter 6: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and titanium oxide: Wastewater treatment -- 6.1. Introduction -- 6.2. Characterization of nanocellulose (cellulose nanocrystals and cellulose nanofibrils) -- 6.3. Treatment of contaminated water with nanocellulose/nanocellulose based nanohybrid composites -- 6.4. Removal of oil from waste water -- 6.4.1. Removal of drugs with cellulose nanohybrid fibrils -- 6.4.2. Separation processes and wastewater treatment -- 6.4.3. Cellulose nanomaterials in membranes for waste water treatment -- 6.4.4. TiO2 photocatalysts for waste water treatment -- 6.4.5. Methods for the synthesis of TiO2 -- 6.4.6. Application of TiO2-composite material in the wastewater treatment -- 6.4.7. Photocatalytic reactions using TiO2/TiO2-composite. | |
505 | 8 | _a6.5. Conclusions -- Acknowledgments -- References -- Chapter 7: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and zinc oxides: Energy applications -- 7.1. Cellulose and derivatives from renewable sources -- 7.2. Types of cellulose -- 7.2.1. Cellulose nanofibrils (CNF) -- 7.2.2. Cellulose nanocrystals (CNC) -- 7.2.3. Bacterial nanocellulose (BNC) -- 7.3. Metal oxide-based cellulose nanohybrid composites -- 7.3.1. Zinc-oxide based cellulose hybrid nanocomposite -- 7.3.2. Synthesis methods and surface modification -- 7.3.3. Cellulose/ZnO energy and sensing properties -- 7.4. Cellulose-based composites for energy applications -- 7.4.1. State of art -- 7.4.2. Cellulose-based material for energy conversion -- 7.4.2.1. Organic photovoltaics (OPV) -- 7.4.2.2. Nanocellulose-based paper substrate for solar cell development -- 7.4.2.3. CNF-templated mesoporous structure as solar cell electrodes -- 7.4.2.4. Cellulose in photoelectrochemical (PEC) cell development -- 7.5. Cellulose for energy storage -- 7.5.1. Cellulose in sodium-ion battery (SIB) -- 7.5.2. Cellulose-based lithium-ion batteries (LIB) -- 7.5.2.1. Cellulose-based binders for LIB -- 7.5.2.2. Cellulose-based separators for LIB -- 7.5.2.3. Cellulose-based electrolyte for LIB -- 7.5.3. Supercapacitors -- 7.5.3.1. Nanocellulose as substrate materials for paper supercapacitors -- 7.5.4. Cellulose as electrodes for pseudo-capacitors -- 7.5.5. Cellulose nanomaterials for nanogenerator developments -- 7.5.5.1. Cellulose nanostructure-based triboelectric nanogenerators -- 7.5.5.2. Cellulose-based piezoelectric nanogenerators -- 7.6. Summary -- References -- Chapter 8: Cellulose nanocrystal (CNC): Inorganic hybrid nanocomposites -- 8.1. Introduction -- 8.2. Cellulose nanocrystals -- 8.2.1. General overview on the chemistry and properties of cellulose. | |
505 | 8 | _a8.2.2. Extraction techniques of cellulose nanocrystals -- 8.3. Cellulose nanocrystals: Inorganic hybrid nanocomposites -- 8.3.1. Synthesis of cellulose-inorganic hybrid nanocomposites -- 8.3.1.1. Coprecipitation process -- 8.3.1.2. Sol-gel processing -- 8.3.1.3. Pickering emulsion synthesis -- 8.3.1.4. Hydrothermal/solvothermal processing -- 8.3.2. Characterization of cellulose-inorganic hybrid nanocomposites -- 8.3.2.1. Cellulose-silica nanoparticles hybrid nanocomposites -- 8.3.2.2. Cellulose-gold nanoparticles hybrid nanocomposites -- 8.3.2.3. Cellulose-silver nanoparticles hybrid nanocomposites -- 8.3.2.4. Cellulose-palladium nanoparticles hybrid nanocomposites -- 8.3.2.5. Cellulose-metal oxide nanoparticles hybrid nanocomposites -- 8.3.3. Cellulose-inorganic hybrid nanocomposites applications -- 8.4. Conclusion -- References -- Chapter 9: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils with graphene and its derivatives: From prep ... -- 9.1. Introduction -- 9.2. Cellulose based nanocrystals/nanofibrils -- 9.3. Graphene based composites -- 9.4. Nanocomposites of cellulose nanocrystals/nanofibrils with graphene and its derivatives -- 9.5. Solution intercalation -- 9.6. Melt intercalation -- 9.7. In situ polymerization -- 9.8. Applications -- 9.9. Conclusion -- Reference -- Chapter 10: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils: From preparation to applications -- 10.1. Introduction to cellulose-based composites -- 10.2. Materials and methods -- 10.2.1. Materials -- 10.2.1.1. Preparation of nanocellulose fiber from sugarcane bagasse -- 10.2.1.2. Synthesis of Al-SiC nanoparticles -- 10.2.1.3. Polyester composites fabrication -- 10.2.2. Characterization -- 10.3. Results and discussion -- 10.3.1. Characteristic curves -- 10.3.2. Mechanical properties -- 10.3.3. Viscoelastic properties. | |
505 | 8 | _a10.3.4. Thermal stability -- 10.4. Applications of polyester hybrid composites -- 10.5. Conclusion -- Acknowledgment -- References -- Chapter 11: Mechanical modeling of hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and nanoparticles -- 11.1. Introduction -- 11.2. Nanocomposites reinforcement -- 11.2.1. Nano-reinforcements classification -- 11.2.1.1. 3D geometry reinforcement -- 11.2.1.2. 2D geometry reinforcement -- 11.2.1.3. 1D geometry reinforcement -- 11.2.2. Nanocomposites based on cellulose reinforcement -- 11.2.2.1. Cellulose classification -- Cellulose nanofibers (CNF) -- Cellulose nanocrystals (CNC) -- Cellulose hairy nanocrystals (CHNC) -- 11.2.2.2. Effects of nanocellulose on polymer mechanical properties -- Fiber aspect ratio -- Fiber volume fraction -- Fiber orientation -- Fiber dispersion -- Fiber/matrix adhesion -- Type of the fibers -- 11.3. Cellulose based hybrid nanocomposites materials -- 11.3.1. Manufacturing methods -- 11.3.1.1. Solution casting technique -- 11.3.1.2. In situ technique -- 11.3.1.3. Melt blending technique -- 11.3.2. Hybrid nanocomposites mechanical properties -- 11.3.2.1. Polymer hybrid nanocomposites based on cellulose/inorganic materials -- 11.3.2.2. Polymer hybrid nanocomposites based on cellulose/metallic materials -- 11.3.2.3. Polymer hybrid nanocomposites based on cellulose/carbon allotropes -- 11.4. Mechanical modeling of hybrid nanocomposites based on cellulose -- 11.4.1. Phenomenological models -- 11.4.2. Homogenization models -- 11.4.2.1. Voigt and Reuss limiting cases -- 11.4.2.2. Eshelby approach -- Homogeneous inclusion of Eshelby -- Heterogeneous inclusion of Eshelby -- 11.4.2.3. Self-consistent model -- 11.5. Conclusion -- References -- Index. | |
650 | 0 |
_aNanocomposites (Materials) _95885 |
|
650 | 0 |
_aCellulose _xIndustrial applications. _969502 |
|
650 | 6 |
_aMat�eriaux nanocomposites. _0(CaQQLa)000269981 _969503 |
|
650 | 6 |
_aCellulose _0(CaQQLa)201-0005083 _xApplications industrielles. _0(CaQQLa)201-0374039 _969504 |
|
650 | 7 |
_aNanocomposites (Materials) _2fast _0(OCoLC)fst01748679 _95885 |
|
700 | 1 |
_aRodrigue, Denis. _969505 |
|
700 | 1 |
_aQaiss, Abou el Kacem. _968745 |
|
700 | 1 |
_aBouhfid, Rachid. _968744 |
|
776 | 0 | 8 |
_iEbook version : _z9780128230909 |
776 | 0 | 8 |
_iPrint version: _tCellulose nanocrystal/nanoparticles hybrid nanocomposites. _dLondon : Woodhead Publishing, 2021 _z0128229063 _z9780128229064 _w(OCoLC)1164497596 |
830 | 0 |
_aWoodhead Publishing series in composites science and engineering. _969506 |
|
856 | 4 | 0 |
_3ScienceDirect _uhttps://www.sciencedirect.com/science/book/9780128229064 |
942 | _cEBK | ||
999 |
_c82621 _d82621 |