000 | 06987nam a2200733 i 4500 | ||
---|---|---|---|
001 | 9780750347051 | ||
003 | IOP | ||
005 | 20230516170340.0 | ||
006 | m eo d | ||
007 | cr cn |||m|||a | ||
008 | 220705s2022 enka fob 000 0 eng d | ||
020 |
_a9780750347051 _qebook |
||
020 |
_a9780750347044 _qmobi |
||
020 |
_z9780750347037 _qprint |
||
020 |
_z9780750347068 _qmyPrint |
||
024 | 7 |
_a10.1088/978-0-7503-4705-1 _2doi |
|
035 | _a(CaBNVSL)thg00083294 | ||
035 | _a(OCoLC)1336503080 | ||
040 |
_aCaBNVSL _beng _erda _cCaBNVSL _dCaBNVSL |
||
050 | 4 |
_aTA1522 _b.G666 2022eb |
|
072 | 7 |
_aPHJ _2bicssc |
|
072 | 7 |
_aSCI053000 _2bisacsh |
|
082 | 0 | 4 |
_a621.36/9 _223 |
100 | 1 |
_aGonz�alez-Acu�ana, Rafael G., _eauthor. _971164 |
|
245 | 1 | 0 |
_aOptical path theory : _bfundamentals to freeform adaptive optics / _cRafael G. Gonz�alez-Acu�ana, H�ector A. Chaparro-Romo. |
246 | 3 | 0 | _aFundamentals to freeform adaptive optics. |
264 | 1 |
_aBristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : _bIOP Publishing, _c[2022] |
|
300 |
_a1 online resource (various pagings) : _billustrations (some color). |
||
336 |
_atext _2rdacontent |
||
337 |
_aelectronic _2isbdmedia |
||
338 |
_aonline resource _2rdacarrier |
||
490 | 1 | _a[IOP release $release] | |
490 | 1 | _aIOP series in emerging technologies in optics and photonics | |
490 | 1 | _aIOP ebooks. [2022 collection] | |
500 | _a"Version: 20220601"--Title page verso. | ||
504 | _aIncludes bibliographical references. | ||
505 | 0 | _apart I. Introduction to optical path theory. 1. The path of light -- 1.1. Purpose and introduction to this treatise -- 1.2. The optical path and Fermat's principle -- 1.3. The law of reflection -- 1.4. The law of refraction -- 1.5. The vector form of Snell's law -- 1.6. The wavefront and the Malus-Dupin theorem -- 1.7. Optical path difference and phase difference -- 1.8. Stigmatism and aberrated wavefronts -- 1.9. Adaptive optics -- 1.10. Optical testing -- 1.11. End notes | |
505 | 8 | _apart II. Aspheric optical systems and the path of light. 2. General catoptric stigmatic surfaces -- 2.1. The crux of adaptive optics -- 2.2. General equation for deformable mirrors for images at a finite distance -- 2.3. The eikonal, the wavefront, and ray tracing -- 2.4. Mathematica code -- 2.5. Examples -- 2.6. The general equation for deformable mirrors for images at infinity -- 2.7. The eikonal, the wavefront, and ray tracing -- 2.8. Mathematica code -- 2.9. Examples -- 2.10. End notes | |
505 | 8 | _a3. General dioptric stigmatic surfaces -- 3.1. A more general solution than Cartesian ovals -- 3.2. General equation for stigmatic surfaces for images at finite distances -- 3.3. The wavefronts of images at finite distances -- 3.4. Mathematica code -- 3.5. Examples -- 3.6. The general equation for stigmatic surfaces for images at infinity -- 3.7. The wavefronts of images at infinity -- 3.8. Mathematica code -- 3.9. Examples -- 3.10. End notes | |
505 | 8 | _a4. The aspheric transfer-function lens -- 4.1. Transfer functions -- 4.2. Mathematical model of the planar transfer-function lens -- 4.3. Ray tracing light passing through the transfer-function lens -- 4.4. Mathematica code -- 4.5. Examples -- 4.6. End notes | |
505 | 8 | _a5. General equation for the aspheric wavefront generator lens -- 5.1. Introduction -- 5.2. Mathematical model for adaptive optics for finite images -- 5.3. The wavefront generator lens for images at finite distances -- 5.4. Mathematica code -- 5.5. Examples -- 5.6. Mathematical model for wavefront generator lenses for images at infinity -- 5.7. Wavefront of the wavefront generator lens for images at infinity -- 5.8. Mathematica code -- 5.9. Examples -- 5.10. End notes | |
505 | 8 | _apart III. Freeform optical systems and the path of light. 6. General mirror for adaptive optical systems -- 6.1. The crux of adaptive optics -- 6.2. The general formula for freeform deformable mirrors for images at finite distances -- 6.3. The wavefront for finite images -- 6.4. Mathematica code -- 6.5. Examples -- 6.6. The crux of adaptive optics -- 6.7. The eikonal of the crux of adaptive optics -- 6.8. Mathematica code -- 6.9. Examples -- 6.10. End notes | |
505 | 8 | _a7. General freeform dioptric stigmatic surfaces -- 7.1. Introduction -- 7.2. Mathematical model of freeform stigmatic surfaces for images at finite distances -- 7.3. The wavefronts of images at finite distances -- 7.4. Mathematica -- 7.5. Examples -- 7.6. Mathematical model of freeform stigmatic surfaces for images at infinity -- 7.7. The wavefront and the collimated output rays -- 7.8. Mathematica code -- 7.9. Examples -- 7.10. End notes | |
505 | 8 | _a8. The freeform transfer function lens -- 8.1. Introduction -- 8.2. Mathematical model -- 8.3. Ray tracing of light passing through the transfer function lens -- 8.4. Mathematica code -- 8.5. Examples -- 8.6. End notes | |
505 | 8 | _a9. General equation of the freeform wavefront generator lens -- 9.1. Introduction -- 9.2. Mathematical model for freeform wavefront generator lenses -- 9.3. The wavefront produced by the wavefront generator lens for finite images -- 9.4. Mathematica code -- 9.5. Examples -- 9.6. End notes. | |
520 | 3 | _aThis book is mostly based in an equation that was recently published. The equation is the general formula for adaptive optics mirrors, which was published in January 2021--General mirror formula for adaptive optics, Applied Optics 60(2). | |
521 | _aOptical engineers, academics in optics and physics. | ||
530 | _aAlso available in print. | ||
538 | _aMode of access: World Wide Web. | ||
538 | _aSystem requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader. | ||
545 | _aRafael G. Gonz�alez-Acu�ana studied industrial physics engineering at the Tecnol�ogico de Monterrey gaining a master's degree in optomechatronics at the Optics Research Center, A.C., and studied his PhD at the Tecnol�ogico de Monterrey. H�ector A Chaparro-Romo, Electronic Engineer with Master's studies in Computer Science specialised in scientific computation and years of experience in optics research and applications, he is co-author of the solution to the problem of designing bi-aspheric singlet lenses free of spherical aberration. | ||
588 | 0 | _aTitle from PDF title page (viewed on July 5, 2022). | |
650 | 0 |
_aOptics, Adaptive. _971165 |
|
650 | 7 |
_aOptical physics. _2bicssc _971166 |
|
650 | 7 |
_aOptics and photonics. _2bisacsh _918815 |
|
700 | 1 |
_aChaparro-Romo, H�ector A., _eauthor. _971167 |
|
710 | 2 |
_aInstitute of Physics (Great Britain), _epublisher. _911622 |
|
776 | 0 | 8 |
_iPrint version: _z9780750347037 _z9780750347068 |
830 | 0 |
_aIOP (Series). _pRelease 22. _971168 |
|
830 | 0 |
_aIOP series in emerging technologies in optics and photonics. _971169 |
|
830 | 0 |
_aIOP ebooks. _p2022 collection. _971170 |
|
856 | 4 | 0 | _uhttps://iopscience.iop.org/book/978-0-7503-4705-1 |
942 | _cEBK | ||
999 |
_c82968 _d82968 |