000 | 04853cam a2200517M 4500 | ||
---|---|---|---|
001 | 9781003028604 | ||
003 | FlBoTFG | ||
005 | 20230516170541.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 210402s2021 xx o 0|| 0 eng d | ||
040 |
_aOCoLC-P _beng _cOCoLC-P |
||
020 |
_a9781000389111 _q(electronic bk.) |
||
020 |
_a1000389111 _q(electronic bk.) |
||
020 |
_a9781003028604 _q(electronic bk.) |
||
020 |
_a1003028608 _q(electronic bk.) |
||
020 |
_a9781000389166 _q(electronic bk. : EPUB) |
||
020 |
_a1000389162 _q(electronic bk. : EPUB) |
||
020 | _z0367464101 | ||
020 | _z9780367464103 | ||
020 | _z036746134X | ||
020 | _z9780367461348 | ||
035 | _a(OCoLC)1244535905 | ||
035 | _a(OCoLC-P)1244535905 | ||
050 | 4 | _aQC171.2 | |
072 | 7 |
_aSCI _x065000 _2bisacsh |
|
072 | 7 |
_aSCI _x040000 _2bisacsh |
|
072 | 7 |
_aSCI _x013050 _2bisacsh |
|
072 | 7 |
_aPHS _2bicssc |
|
082 | 0 | 4 |
_a530.13 _223 |
100 | 1 |
_aHoch, M. J. R. _q(Michael J. R.), _d1936- _971445 |
|
245 | 1 | 0 |
_aSTATISTICAL AND THERMAL PHYSICS _h[electronic resource] : _ban introduction. |
260 |
_a[S.l.] : _bCRC PRESS, _c2021. |
||
300 | _a1 online resource | ||
520 | _aThermal and statistical physics has established the principles and procedures needed to understand and explain the properties of systems consisting of macroscopically large numbers of particles. By developing microscopic statistical physics and macroscopic classical thermodynamic descriptions in tandem, Statistical and Thermal Physics: An Introduction provides insight into basic concepts and relationships at an advanced undergraduate level. This second edition is updated throughout, providing a highly detailed, profoundly thorough, and comprehensive introduction to the subject and features exercises within the text as well as end-of-chapter problems. Part I of this book consists of nine chapters, the first three of which deal with the basics of equilibrium thermodynamics, including the fundamental relation. The following three chapters introduce microstates and lead to the Boltzmann definition of the entropy using the microcanonical ensemble approach. In developing the subject, the ideal gas and the ideal spin system are introduced as models for discussion. The laws of thermodynamics are compactly stated. The final three chapters in Part I introduce the thermodynamic potentials and the Maxwell relations. Applications of thermodynamics to gases, condensed matter, and phase transitions and critical phenomena are dealt with in detail. Initial chapters in Part II present the elements of probability theory and establish the thermodynamic equivalence of the three statistical ensembles that are used in determining probabilities. The canonical and the grand canonical distributions are obtained and discussed. Chapters 12-15 are concerned with quantum distributions. By making use of the grand canonical distribution, the Fermi-Dirac and Bose-Einstein quantum distribution functions are derived and then used to explain the properties of ideal Fermi and Bose gases. The Planck distribution is introduced and applied to photons in radiation and to phonons on solids. The last five chapters cover a variety of topics: the ideal gas revisited, nonideal systems, the density matrix, reactions, and irreversible thermodynamics. A flowchart is provided to assist instructors on planning a course. Key Features: Fully updated throughout, with new content on exciting topics, including black hole thermodynamics, Heisenberg antiferromagnetic chains, entropy and information theory, renewable and nonrenewable energy sources, and the mean field theory of antiferromagnetic systems Additional problem exercises with solutions provide further learning opportunities Suitable for advanced undergraduate students in physics or applied physics. Michael J.R. Hoch spent many years as a visiting scientist at the National High Magnetic Field Laboratory at Florida State University, USA. Prior to this, he was a professor of physics and the director of the Condensed Matter Physics Research Unit at the University of the Witwatersrand, Johannesburg, where he is currently professor emeritus in the School of Physics. | ||
588 | _aOCLC-licensed vendor bibliographic record. | ||
650 | 0 |
_aMatter _xProperties _xMathematical models. _971446 |
|
650 | 0 |
_aStatistical physics. _93234 |
|
650 | 0 |
_aThermodynamics. _93554 |
|
650 | 7 |
_aSCIENCE / Mechanics / Dynamics / Thermodynamics _2bisacsh _910851 |
|
650 | 7 |
_aSCIENCE / Mathematical Physics _2bisacsh _910890 |
|
650 | 7 |
_aSCIENCE / Chemistry / Physical & Theoretical _2bisacsh _95464 |
|
856 | 4 | 0 |
_3Taylor & Francis _uhttps://www.taylorfrancis.com/books/9781003028604 |
856 | 4 | 2 |
_3OCLC metadata license agreement _uhttp://www.oclc.org/content/dam/oclc/forms/terms/vbrl-201703.pdf |
942 | _cEBK | ||
999 |
_c83029 _d83029 |