000 02630nam a2200385 i 4500
001 CR9781139087698
003 UkCbUP
005 20240730160751.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 110516s2013||||enk o ||1 0|eng|d
020 _a9781139087698 (ebook)
020 _z9781107018396 (hardback)
040 _aUkCbUP
_beng
_erda
_cUkCbUP
050 0 0 _aQA274.75
_b.H37 2013
082 0 0 _a519.2/33
_223
100 1 _aHarrison, J. Michael,
_d1944-
_eauthor.
_974568
240 1 0 _aBrownian motion and stochastic flow systems
245 1 0 _aBrownian models of performance and control /
_cJ. Michael Harrison, Stanford University, California.
246 3 _aBrownian Models of Performance & Control
264 1 _aCambridge :
_bCambridge University Press,
_c2013.
300 _a1 online resource (xviii, 190 pages) :
_bdigital, PDF file(s).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
500 _aTitle from publisher's bibliographic system (viewed on 05 Oct 2015).
500 _aUpdated and expanded version of: Brownian motion and stochastic flow systems (John Wiley and Sons, 1985).--Preface.
505 0 _aBrownian motion -- Stochastic storage models -- Further analysis of Brownian motion -- Stochastic calculus -- Optimal stopping of Brownian motion -- Reflected Brownian motion -- Optimal control of Brownian motion -- Brownian models of dynamic inference -- Further examples -- Appendix A. Stochastic processes -- Appendix B. Real analysis.
520 _aDirect and to the point, this book from one of the field's leaders covers Brownian motion and stochastic calculus at the graduate level, and illustrates the use of that theory in various application domains, emphasizing business and economics. The mathematical development is narrowly focused and briskly paced, with many concrete calculations and a minimum of abstract notation. The applications discussed include: the role of reflected Brownian motion as a storage model, queuing model, or inventory model; optimal stopping problems for Brownian motion, including the influential McDonald-Siegel investment model; optimal control of Brownian motion via barrier policies, including optimal control of Brownian storage systems; and Brownian models of dynamic inference, also called Brownian learning models or Brownian filtering models.
650 0 _aBrownian motion processes.
_974569
650 0 _aStochastic processes.
_93246
776 0 8 _iPrint version:
_z9781107018396
856 4 0 _uhttps://doi.org/10.1017/CBO9781139087698
942 _cEBK
999 _c84166
_d84166