000 03749nam a2200361 i 4500
001 CR9781009042529
003 UkCbUP
005 20240730160801.0
006 m|||||o||d||||||||
007 cr||||||||||||
008 210202s2023||||enk o ||1 0|eng|d
020 _a9781009042529 (ebook)
020 _z9781316517512 (hardback)
040 _aUkCbUP
_beng
_erda
_cUkCbUP
050 0 0 _aRC78.7.D53
_bD44 2023
082 0 0 _a616.07/54
_223/eng/20230612
245 0 0 _aDeep learning for biomedical image reconstruction /
_cedited by Jong Chul Ye, Yonina C. Eldar, Michael Unser.
264 1 _aCambridge :
_bCambridge University Press,
_c2023.
300 _a1 online resource (xxii, 341 pages) :
_bdigital, PDF file(s).
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
500 _aTitle from publisher's bibliographic system (viewed on 15 Sep 2023).
505 0 _aFormalizing Deep Neural Networks Michael Unser Geometry of Deep Learning Jong Chul Ye, Sangmin Lee Model based Reconstruction with Learning From Unsupervised to Supervised and Beyond Saiprasad Ravishankar, Zhishen Huang, Michael McCann, Siqi Ye Deep Algorithm Unrolling for Biomedical Imaging Yuelong Li, Or Bar Shira, Vishal Monga and Yonina C. Eldar Deep Learning for CT Image Reconstruction Haimiao Zhang, Bin Dong, Ge Wang, Baodong Liu Deep learning in CT reconstruction : bring the measured data to tasks / Guang-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han, Jong Chul Ye -- Overview deep learning reconstruction of accelerated MRI / Patricia Johnson, Florian Knoll -- Model-based deep learning algorithms for inverse problems / Mathews Jacob, Hemant K. Aggarwal, and Qing Zou -- k-space deep learning for MR reconstruction and artifact removal / Mehmet Akcakaya, Gyutaek Oh, Jong Chul Ye -- Deep learning for ultrasound beamforming / Ruud JG van Sloun, Jong Chul Ye and Yonina C Eldar -- Ultrasound image artifact removal using deep neural network / Jaeyoung Huh, Shujaat Khan, Jong Chul Ye -- Deep Generative Models for Biomedical Image Reconstruction / Jaejun Yoo, Michael Unser -- Image synthesis in multi-contrast MRI with generative adversarial networks / Tolga Cukur, Mahmut Yurt, Salman Ul Hassan Dar, Hyungjin Chung, Jong Chul Ye -- Regularizing Deep-Neural-Network Paradigm for the Reconstruction of Dynamic Magnetic Resonance Images / Jaejun Yoo, Michael Unser -- Regularizing Neural Network for Phase Unwrapping / Thanh-an Pham, Fangshu Yang, Michael Unser -- CryoGAN : A Deep Generative Adversarial Approach to Single-Particle Cryo-EM / Michael T. McCann, Laur`ene Donati, Harshit Gupta, Michael Unser.
520 _aDiscover the power of deep neural networks for image reconstruction with this state-of-the-art review of modern theories and applications. The background theory of deep learning is introduced step-by-step, and by incorporating modeling fundamentals this book explains how to implement deep learning in a variety of modalities, including X-ray, CT, MRI and others. Real-world examples demonstrate an interdisciplinary approach to medical image reconstruction processes, featuring numerous imaging applications. Recent clinical studies and innovative research activity in generative models and mathematical theory will inspire the reader towards new frontiers. This book is ideal for graduate students in Electrical or Biomedical Engineering or Medical Physics.
650 0 _aDiagnostic imaging.
_96280
700 1 _aYe, Jong Chul,
_eeditor.
_974713
700 1 _aEldar, Yonina C.,
_eeditor.
_974714
700 1 _aUnser, Michael A.,
_eeditor.
_974715
776 0 8 _iPrint version:
_z9781316517512
856 4 0 _uhttps://doi.org/10.1017/9781009042529
942 _cEBK
999 _c84222
_d84222