000 03444nam a22005175i 4500
001 978-3-031-02431-3
003 DE-He213
005 20240730163526.0
007 cr nn 008mamaa
008 220601s2021 sz | s |||| 0|eng d
020 _a9783031024313
_9978-3-031-02431-3
024 7 _a10.1007/978-3-031-02431-3
_2doi
050 4 _aQA1-939
072 7 _aPB
_2bicssc
072 7 _aMAT000000
_2bisacsh
072 7 _aPB
_2thema
082 0 4 _a510
_223
100 1 _aRamm, Alexander G.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_979036
245 1 4 _aThe Navier-Stokes Problem
_h[electronic resource] /
_cby Alexander G. Ramm.
250 _a1st ed. 2021.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2021.
300 _aXV, 61 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSynthesis Lectures on Mathematics & Statistics,
_x1938-1751
505 0 _aPreface -- Introduction -- Brief History of the Navier-Stokes Problem -- Statement of the Navier-Stokes Problem -- Theory of Some Hyper-Singular Integral Equations -- A Priori Estimates of the Solution to the NSP -- Uniqueness of the Solution to the NSP -- The Paradox and its Consequences -- Logical Analysis of Our Proof -- Appendix 1 - Theory of Distributions and Hyper-Singular Integrals -- Appendix 2 - Gamma and Beta Functions -- Appendix 3 - The Laplace Transform -- Bibliography -- Author's Biography.
520 _aThe main result of this book is a proof of the contradictory nature of the Navier‒Stokes problem (NSP). It is proved that the NSP is physically wrong, and the solution to the NSP does not exist on ℝ+ (except for the case when the initial velocity and the exterior force are both equal to zero; in this case, the solution ����(����, ����) to the NSP exists for all ���� ≥ 0 and ����(����, ����) = 0). It is shown that if the initial data ����0(����) ≢ 0, ����(����,����) = 0 and the solution to the NSP exists for all ���� ϵ ℝ+, then ����0(����) := ����(����, 0) = 0. This Paradox proves that the NSP is physically incorrect and mathematically unsolvable, in general. Uniqueness of the solution to the NSP in the space ����21(ℝ3) × C(ℝ+) is proved, ����21(ℝ3) is the Sobolev space, ℝ+ = [0, ∞). Theory of integral equations and inequalities with hyper-singular kernels is developed. The NSP is reduced to an integral inequality with a hyper-singular kernel.
650 0 _aMathematics.
_911584
650 0 _aStatistics .
_931616
650 0 _aEngineering mathematics.
_93254
650 1 4 _aMathematics.
_911584
650 2 4 _aStatistics.
_914134
650 2 4 _aEngineering Mathematics.
_93254
710 2 _aSpringerLink (Online service)
_979037
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031002779
776 0 8 _iPrinted edition:
_z9783031013034
776 0 8 _iPrinted edition:
_z9783031035593
830 0 _aSynthesis Lectures on Mathematics & Statistics,
_x1938-1751
_979038
856 4 0 _uhttps://doi.org/10.1007/978-3-031-02431-3
912 _aZDB-2-SXSC
942 _cEBK
999 _c84703
_d84703