000 | 03444nam a22005175i 4500 | ||
---|---|---|---|
001 | 978-3-031-02431-3 | ||
003 | DE-He213 | ||
005 | 20240730163526.0 | ||
007 | cr nn 008mamaa | ||
008 | 220601s2021 sz | s |||| 0|eng d | ||
020 |
_a9783031024313 _9978-3-031-02431-3 |
||
024 | 7 |
_a10.1007/978-3-031-02431-3 _2doi |
|
050 | 4 | _aQA1-939 | |
072 | 7 |
_aPB _2bicssc |
|
072 | 7 |
_aMAT000000 _2bisacsh |
|
072 | 7 |
_aPB _2thema |
|
082 | 0 | 4 |
_a510 _223 |
100 | 1 |
_aRamm, Alexander G. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _979036 |
|
245 | 1 | 4 |
_aThe Navier-Stokes Problem _h[electronic resource] / _cby Alexander G. Ramm. |
250 | _a1st ed. 2021. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2021. |
|
300 |
_aXV, 61 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSynthesis Lectures on Mathematics & Statistics, _x1938-1751 |
|
505 | 0 | _aPreface -- Introduction -- Brief History of the Navier-Stokes Problem -- Statement of the Navier-Stokes Problem -- Theory of Some Hyper-Singular Integral Equations -- A Priori Estimates of the Solution to the NSP -- Uniqueness of the Solution to the NSP -- The Paradox and its Consequences -- Logical Analysis of Our Proof -- Appendix 1 - Theory of Distributions and Hyper-Singular Integrals -- Appendix 2 - Gamma and Beta Functions -- Appendix 3 - The Laplace Transform -- Bibliography -- Author's Biography. | |
520 | _aThe main result of this book is a proof of the contradictory nature of the Navier‒Stokes problem (NSP). It is proved that the NSP is physically wrong, and the solution to the NSP does not exist on ℝ+ (except for the case when the initial velocity and the exterior force are both equal to zero; in this case, the solution ����(����, ����) to the NSP exists for all ���� ≥ 0 and ����(����, ����) = 0). It is shown that if the initial data ����0(����) ≢ 0, ����(����,����) = 0 and the solution to the NSP exists for all ���� ϵ ℝ+, then ����0(����) := ����(����, 0) = 0. This Paradox proves that the NSP is physically incorrect and mathematically unsolvable, in general. Uniqueness of the solution to the NSP in the space ����21(ℝ3) × C(ℝ+) is proved, ����21(ℝ3) is the Sobolev space, ℝ+ = [0, ∞). Theory of integral equations and inequalities with hyper-singular kernels is developed. The NSP is reduced to an integral inequality with a hyper-singular kernel. | ||
650 | 0 |
_aMathematics. _911584 |
|
650 | 0 |
_aStatistics . _931616 |
|
650 | 0 |
_aEngineering mathematics. _93254 |
|
650 | 1 | 4 |
_aMathematics. _911584 |
650 | 2 | 4 |
_aStatistics. _914134 |
650 | 2 | 4 |
_aEngineering Mathematics. _93254 |
710 | 2 |
_aSpringerLink (Online service) _979037 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031002779 |
776 | 0 | 8 |
_iPrinted edition: _z9783031013034 |
776 | 0 | 8 |
_iPrinted edition: _z9783031035593 |
830 | 0 |
_aSynthesis Lectures on Mathematics & Statistics, _x1938-1751 _979038 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-031-02431-3 |
912 | _aZDB-2-SXSC | ||
942 | _cEBK | ||
999 |
_c84703 _d84703 |