000 | 04255nam a22005175i 4500 | ||
---|---|---|---|
001 | 978-3-031-02130-5 | ||
003 | DE-He213 | ||
005 | 20240730163816.0 | ||
007 | cr nn 008mamaa | ||
008 | 220601s2009 sz | s |||| 0|eng d | ||
020 |
_a9783031021305 _9978-3-031-02130-5 |
||
024 | 7 |
_a10.1007/978-3-031-02130-5 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
100 | 1 |
_aZhai, Chengxiang. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut _980623 |
|
245 | 1 | 0 |
_aStatistical Language Models for Information Retrieval _h[electronic resource] / _cby Chengxiang Zhai. |
250 | _a1st ed. 2009. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2009. |
|
300 |
_aXII, 132 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSynthesis Lectures on Human Language Technologies, _x1947-4059 |
|
505 | 0 | _aIntroduction -- Overview of Information Retrieval Models -- Simple Query Likelihood Retrieval Model -- Complex Query Likelihood Model -- Probabilistic Distance Retrieval Model -- Language Models for Special Retrieval Tasks -- Language Models for Latent Topic Analysis -- Conclusions. | |
520 | _aAs online information grows dramatically, search engines such as Google are playing a more and more important role in our lives. Critical to all search engines is the problem of designing an effective retrieval model that can rank documents accurately for a given query. This has been a central research problem in information retrieval for several decades. In the past ten years, a new generation of retrieval models, often referred to as statistical language models, has been successfully applied to solve many different information retrieval problems. Compared with the traditional models such as the vector space model, these new models have a more sound statistical foundation and can leverage statistical estimation to optimize retrieval parameters. They can also be more easily adapted to model non-traditional and complex retrieval problems. Empirically, they tend to achieve comparable or better performance than a traditional model with less effort on parameter tuning. This book systematically reviews the large body of literature on applying statistical language models to information retrieval with an emphasis on the underlying principles, empirically effective language models, and language models developed for non-traditional retrieval tasks. All the relevant literature has been synthesized to make it easy for a reader to digest the research progress achieved so far and see the frontier of research in this area. The book also offers practitioners an informative introduction to a set of practically useful language models that can effectively solve a variety of retrieval problems. No prior knowledge about information retrieval is required, but some basic knowledge about probability and statistics would be useful for fully digesting all the details. Table of Contents: Introduction / Overview of Information Retrieval Models / Simple Query Likelihood Retrieval Model / Complex Query Likelihood Model / Probabilistic Distance Retrieval Model / Language Models for Special Retrieval Tasks / Language Models for Latent Topic Analysis / Conclusions. | ||
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aNatural language processing (Computer science). _94741 |
|
650 | 0 |
_aComputational linguistics. _96146 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aNatural Language Processing (NLP). _931587 |
650 | 2 | 4 |
_aComputational Linguistics. _96146 |
710 | 2 |
_aSpringerLink (Online service) _980624 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031010026 |
776 | 0 | 8 |
_iPrinted edition: _z9783031032585 |
830 | 0 |
_aSynthesis Lectures on Human Language Technologies, _x1947-4059 _980625 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-031-02130-5 |
912 | _aZDB-2-SXSC | ||
942 | _cEBK | ||
999 |
_c84997 _d84997 |