000 03628nam a22005295i 4500
001 978-3-031-02136-7
003 DE-He213
005 20240730163820.0
007 cr nn 008mamaa
008 220601s2010 sz | s |||| 0|eng d
020 _a9783031021367
_9978-3-031-02136-7
024 7 _a10.1007/978-3-031-02136-7
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
100 1 _aLin, Jimmy.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_980639
245 1 0 _aData-Intensive Text Processing with MapReduce
_h[electronic resource] /
_cby Jimmy Lin, Chris Dyer.
250 _a1st ed. 2010.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2010.
300 _aIX, 171 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSynthesis Lectures on Human Language Technologies,
_x1947-4059
505 0 _aIntroduction -- MapReduce Basics -- MapReduce Algorithm Design -- Inverted Indexing for Text Retrieval -- Graph Algorithms -- EM Algorithms for Text Processing -- Closing Remarks.
520 _aOur world is being revolutionized by data-driven methods: access to large amounts of data has generated new insights and opened exciting new opportunities in commerce, science, and computing applications. Processing the enormous quantities of data necessary for these advances requires large clusters, making distributed computing paradigms more crucial than ever. MapReduce is a programming model for expressing distributed computations on massive datasets and an execution framework for large-scale data processing on clusters of commodity servers. The programming model provides an easy-to-understand abstraction for designing scalable algorithms, while the execution framework transparently handles many system-level details, ranging from scheduling to synchronization to fault tolerance. This book focuses on MapReduce algorithm design, with an emphasis on text processing algorithms common in natural language processing, information retrieval, and machine learning. We introduce the notion ofMapReduce design patterns, which represent general reusable solutions to commonly occurring problems across a variety of problem domains. This book not only intends to help the reader "think in MapReduce", but also discusses limitations of the programming model as well. Table of Contents: Introduction / MapReduce Basics / MapReduce Algorithm Design / Inverted Indexing for Text Retrieval / Graph Algorithms / EM Algorithms for Text Processing / Closing Remarks.
650 0 _aArtificial intelligence.
_93407
650 0 _aNatural language processing (Computer science).
_94741
650 0 _aComputational linguistics.
_96146
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aNatural Language Processing (NLP).
_931587
650 2 4 _aComputational Linguistics.
_96146
700 1 _aDyer, Chris.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_980640
710 2 _aSpringerLink (Online service)
_980641
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031010088
776 0 8 _iPrinted edition:
_z9783031032646
830 0 _aSynthesis Lectures on Human Language Technologies,
_x1947-4059
_980642
856 4 0 _uhttps://doi.org/10.1007/978-3-031-02136-7
912 _aZDB-2-SXSC
942 _cEBK
999 _c85001
_d85001