000 05553nam a22005055i 4500
001 978-3-031-01653-0
003 DE-He213
005 20240730164216.0
007 cr nn 008mamaa
008 220601s2012 sz | s |||| 0|eng d
020 _a9783031016530
_9978-3-031-01653-0
024 7 _a10.1007/978-3-031-01653-0
_2doi
050 4 _aT1-995
072 7 _aTBC
_2bicssc
072 7 _aTEC000000
_2bisacsh
072 7 _aTBC
_2thema
082 0 4 _a620
_223
100 1 _aMcEachron, Donald.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_982920
245 1 0 _aChronobioengineering
_h[electronic resource] :
_bIntroduction to Biological Rhythms with Applications, Volume 1 /
_cby Donald McEachron.
250 _a1st ed. 2012.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2012.
300 _aXXIV, 264 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSynthesis Lectures on Biomedical Engineering,
_x1930-0336
505 0 _aTime and Time Again -- Walking on Air: An Empirical Proof-of-Concept -- Clock Tech, Part 1 -- Clock Tech II From External to Internal Timers -- Clock Tech III Rise of the CircaRhythms -- The Circle Game: Mathematics, Models, and Rhythms -- The Power of Circular Reasoning.
520 _aThis book represents the first in a two-volume set on biological rhythms. This volume focuses on supporting the claim that biological rhythms are universal and essential characteristics of living organisms, critical for proper functioning of any living system. The author begins by examining the potential reasons for the evolution of biological rhythms: (1) the need for complex, goal-oriented devices to control the timing of their activities; (2) the inherent tendency of feedback control systems to oscillate; and (3) the existence of stable and powerful geophysical cycles to which all organisms must adapt. To investigate the second reason, the author enlists the help of biomedical engineering students to develop mathematical models of various biological systems. One such model involves a typical endocrine feedback system. By adjusting various model parameters, it was found that creating a oscillation in any component of the model generated a rhythmic cascade that made the entire systemoscillate. This same approach was used to show how daily light/dark cycles could cascade rhythmic patterns throughout ecosystems and within organisms. Following up on these results, the author discusses how the twin requirements of internal synchronization (precise temporal order necessary for the proper functioning of organisms as complex, goal-oriented devices) and external synchronization (aligning organisms' behavior and physiology with geophysical cycles) supported the evolution of biological clocks. The author then investigates the clock systems that evolved using both conceptual and mathematical models, with the assistance of Dr. Bahrad Sokhansanj, who contributes a chapter on mathematical formulations and models of rhythmic phenomena. With the ubiquity of biological rhythms established, the author suggests a new classification system: the F4LM approach (Function; Frequency; waveForm; Flexibility; Level of biological system expressing rhythms; and Mode of rhythm generation) to investigate biological rhythms. This approach is first used on the more familiar cardiac cycle and then on neural rhythms as exemplified and measured by the electroencephalogram. During the process of investigating neural cycles, the author finds yet another reason for the evolution of biological rhythms: physical constraints, such as those imposed upon long distance neural signaling. In addition, a common theme emerges of a select number of autorhythmic biological oscillators imposing coherent rhythmicity on a larger network or system. During the course of the volume, the author uses a variety of observations, models, experimental results, and arguments to support the original claim of the importance and universality of biological rhythms. In Volume 2, the author will move from the establishment of the critical nature of biological rhythms to how these phenomena may be used to improve human health, well-being, and productivity. In a sense, Volume 1 focuses on the chronobio aspect of chronobioengineering while Volume 2 investigates methods of translating this knowledge into applications, the engineering aspect of chronobioengineering. Table of Contents: Time and Time Again / Walking on Air: An Empirical Proof-of-Concept / Clock Tech, Part 1 / Clock Tech II From External to Internal Timers / Clock Tech III Rise of the CircaRhythms / The Circle Game: Mathematics, Models, and Rhythms / The Power of Circular Reasoning.
650 0 _aEngineering.
_99405
650 0 _aBiophysics.
_94093
650 0 _aBiomedical engineering.
_93292
650 1 4 _aTechnology and Engineering.
_982925
650 2 4 _aBiophysics.
_94093
650 2 4 _aBiomedical Engineering and Bioengineering.
_931842
710 2 _aSpringerLink (Online service)
_982928
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031005251
776 0 8 _iPrinted edition:
_z9783031027819
830 0 _aSynthesis Lectures on Biomedical Engineering,
_x1930-0336
_982929
856 4 0 _uhttps://doi.org/10.1007/978-3-031-01653-0
912 _aZDB-2-SXSC
942 _cEBK
999 _c85429
_d85429