000 03319nam a22005055i 4500
001 978-3-031-01526-7
003 DE-He213
005 20240730164329.0
007 cr nn 008mamaa
008 220601s2018 sz | s |||| 0|eng d
020 _a9783031015267
_9978-3-031-01526-7
024 7 _a10.1007/978-3-031-01526-7
_2doi
050 4 _aTK5102.9
072 7 _aTJF
_2bicssc
072 7 _aUYS
_2bicssc
072 7 _aTEC067000
_2bisacsh
072 7 _aTJF
_2thema
072 7 _aUYS
_2thema
082 0 4 _a621,382
_223
100 1 _aStanley, Michael.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_983954
245 1 0 _aSensor Analysis for the Internet of Things
_h[electronic resource] /
_cby Michael Stanley, Jongmin Lee.
250 _a1st ed. 2018.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2018.
300 _aXXIII, 113 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aSynthesis Lectures on Algorithms and Software in Engineering,
_x1938-1735
505 0 _aList of Figures -- List of Tables -- Preface -- Acknowledgments -- Nomenclature -- Introduction -- Sensors -- Sensor Fusion -- Machine Learning for Sensor Data -- IoT Sensor Applications -- Concluding Remarks and Summary -- Bibliography -- Authors' Biographies.
520 _aWhile it may be attractive to view sensors as simple transducers which convert physical quantities into electrical signals, the truth of the matter is more complex. The engineer should have a proper understanding of the physics involved in the conversion process, including interactions with other measurable quantities. A deep understanding of these interactions can be leveraged to apply sensor fusion techniques to minimize noise and/or extract additional information from sensor signals. Advances in microcontroller and MEMS manufacturing, along with improved internet connectivity, have enabled cost-effective wearable and Internet of Things sensor applications. At the same time, machine learning techniques have gone mainstream, so that those same applications can now be more intelligent than ever before. This book explores these topics in the context of a small set of sensor types. We provide some basic understanding of sensor operation for accelerometers, magnetometers,gyroscopes, and pressure sensors. We show how information from these can be fused to provide estimates of orientation. Then we explore the topics of machine learning and sensor data analytics.
650 0 _aSignal processing.
_94052
650 1 4 _aSignal, Speech and Image Processing.
_931566
700 1 _aLee, Jongmin.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_983956
710 2 _aSpringerLink (Online service)
_983959
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031000140
776 0 8 _iPrinted edition:
_z9783031003981
776 0 8 _iPrinted edition:
_z9783031026546
830 0 _aSynthesis Lectures on Algorithms and Software in Engineering,
_x1938-1735
_983961
856 4 0 _uhttps://doi.org/10.1007/978-3-031-01526-7
912 _aZDB-2-SXSC
942 _cEBK
999 _c85590
_d85590