000 04843nam a22005655i 4500
001 978-3-030-32486-5
003 DE-He213
005 20240730164513.0
007 cr nn 008mamaa
008 191008s2019 sz | s |||| 0|eng d
020 _a9783030324865
_9978-3-030-32486-5
024 7 _a10.1007/978-3-030-32486-5
_2doi
050 4 _aTA1634
072 7 _aUYQV
_2bicssc
072 7 _aCOM016000
_2bisacsh
072 7 _aUYQV
_2thema
082 0 4 _a006.37
_223
245 1 0 _aArtificial Intelligence in Radiation Therapy
_h[electronic resource] :
_bFirst International Workshop, AIRT 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings /
_cedited by Dan Nguyen, Lei Xing, Steve Jiang.
250 _a1st ed. 2019.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2019.
300 _aXI, 172 p. 87 illus., 74 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v11850
505 0 _aUsing Supervised Learning and Guided Monte Carlo Tree Search for Beam Orientation Optimization in Radiation Therapy -- Feasibility of CT-only 3D dose prediction for VMAT prostate plans using deep learning -- Automatically Tracking and Detecting Significant Nodal Mass Shrinkage During Head-and-Neck Radiation Treatment Using Image Saliency -- 4D-CT Deformable Image Registration Using an Unsupervised Deep Convolutional Neural Network -- Toward markerless image-guided radiotherapy using deep learning for prostate cancer -- A Two-Stage Approach for Automated Prostate Lesion Detection and Classification with Mask R-CNN and Weakly Supervised Deep Neural Network -- A Novel Deep Learning Framework for Standardizing the Label of OARs in CT -- Multimodal Volume-Aware Detection and Segmentation for Brain Metastases Radiosurgery -- Voxel-level Radiotherapy Dose Prediction Using Densely Connected Network with Dilated Convolutions -- Online Target Volume Estimation and Prediction From an Interlaced Slice Acquisition - A Manifold Embedding and Learning Approach -- One-dimensional convolutional network for Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation Treatment Planning -- Unpaired Synthetic Image Generation in Radiology Using GANs -- Deriving lung perfusion directly from CT image using deep convolutional neural network: A preliminary study -- Individualized 3D Dose Distribution Prediction Using Deep Learning -- Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy -- Dose Distribution Prediction for Optimal Treatment of Modern External Beam Radiation Therapy for Nasopharyngeal Carcinoma -- DeepMCDose: A Deep Learning Method for Efficient Monte Carlo Beamlet Dose Calculation by Predictive Denoising in MR-Guided Radiotherapy -- UC-GAN for MR to CT Image Synthesis -- CBCT-based Synthetic MRI Generation for CBCT-guided Adaptive Radiotherapy -- Cardio-pulmonary Substructure Segmentation of CT images using Convolutional Neural Networks.
520 _aThis book constitutes the refereed proceedings of the First International Workshop on Connectomics in Artificial Intelligence in Radiation Therapy, AIRT 2019, held in conjunction with MICCAI 2019 in Shenzhen, China, in October 2019. The 20 full papers presented were carefully reviewed and selected from 24 submissions. The papers discuss the state of radiation therapy, the state of AI and related technologies, and hope to find a pathway to revolutionizing the field to ultimately improve cancer patient outcome and quality of life.
650 0 _aComputer vision.
_984851
650 0 _aArtificial intelligence.
_93407
650 0 _aMedical informatics.
_94729
650 1 4 _aComputer Vision.
_984852
650 2 4 _aArtificial Intelligence.
_93407
650 2 4 _aHealth Informatics.
_931799
700 1 _aNguyen, Dan.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_984854
700 1 _aXing, Lei.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_984855
700 1 _aJiang, Steve.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_984856
710 2 _aSpringerLink (Online service)
_984858
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783030324858
776 0 8 _iPrinted edition:
_z9783030324872
830 0 _aImage Processing, Computer Vision, Pattern Recognition, and Graphics,
_x3004-9954 ;
_v11850
_984859
856 4 0 _uhttps://doi.org/10.1007/978-3-030-32486-5
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c85734
_d85734