000 04167nam a22005535i 4500
001 978-3-031-48235-9
003 DE-He213
005 20240730170844.0
007 cr nn 008mamaa
008 231227s2024 sz | s |||| 0|eng d
020 _a9783031482359
_9978-3-031-48235-9
024 7 _a10.1007/978-3-031-48235-9
_2doi
050 4 _aQ342
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
100 1 _aŠtuikys, Vytautas.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_995811
245 1 0 _aEvolution of STEM-Driven Computer Science Education
_h[electronic resource] :
_bThe Perspective of Big Concepts /
_cby Vytautas Štuikys, Renata Burbaitė.
250 _a1st ed. 2024.
264 1 _aCham :
_bSpringer Nature Switzerland :
_bImprint: Springer,
_c2024.
300 _aXVI, 360 p. 83 illus., 39 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aContext and model for writing this book: An idea of big concepts -- Part 1: Pedagogical aspects of STEM-driven CS education evolution: Integrated STEM-CS Skills model, personalisation aspects and collaborative learning -- Models for the development and assessment of Integrated STEM (ISTEM) Skills: A case study -- Enforcing STEM-driven CS education through personalisation -- Personal generative libraries for personalised learning: A case study -- Enforcing STEM-driven CS education through collaborative learning -- Part 2: Internet of Things (IoT) and Data Science (DS) concepts in K-12 STEM-driven CS education.-Methodological aspects of educational internet of things -- Multi-stage prototyping for introducing IoT concepts: A case study -- Introducing data science concepts into STEM-driven computer science education -- Part 3: Introduction to artificial intelligence -- A vision for introducing AI topics: A case study -- Speech recognition technology in K-12 STEM-driven computer science education -- Introduction to artificial neural networks and machine learning -- Overall evaluation of this book concepts and approaches.
520 _aThe book discusses the evolution of STEM-driven Computer Science (CS) Education based on three categories of Big Concepts, Smart Education (Pedagogy), Technology (tools and adequate processes) and Content that relates to IoT, Data Science and AI. For developing, designing, testing, delivering and assessing learning outcomes for K-12 students (9-12 classes), the multi-dimensional modelling methodology is at the centre. The methodology covers conceptual and feature-based modelling, prototyping, and virtual and physical modelling at the implementation and usage level. Chapters contain case studies to assist understanding and learning. The book contains multiple methodological and scientific innovations including models, frameworks and approaches to drive STEM-driven CS education evolution. Educational strategists, educators, and researchers will find valuable material in this book to help them improve STEM-drivenCS education strategies, curriculum development, and new ideas for research. .
650 0 _aComputational intelligence.
_97716
650 0 _aEducation
_xData processing.
_982607
650 0 _aSoftware engineering.
_94138
650 0 _aRobotics.
_92393
650 1 4 _aComputational Intelligence.
_97716
650 2 4 _aComputers and Education.
_941129
650 2 4 _aSoftware Engineering.
_94138
650 2 4 _aRobotics.
_92393
700 1 _aBurbaitė, Renata.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
_995814
710 2 _aSpringerLink (Online service)
_995816
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031482342
776 0 8 _iPrinted edition:
_z9783031482366
776 0 8 _iPrinted edition:
_z9783031482373
856 4 0 _uhttps://doi.org/10.1007/978-3-031-48235-9
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cEBK
999 _c87226
_d87226