000 | 04278nam a22006855i 4500 | ||
---|---|---|---|
001 | 978-3-030-37720-5 | ||
003 | DE-He213 | ||
005 | 20240730171040.0 | ||
007 | cr nn 008mamaa | ||
008 | 200103s2020 sz | s |||| 0|eng d | ||
020 |
_a9783030377205 _9978-3-030-37720-5 |
||
024 | 7 |
_a10.1007/978-3-030-37720-5 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aMining Data for Financial Applications _h[electronic resource] : _b4th ECML PKDD Workshop, MIDAS 2019, Würzburg, Germany, September 16, 2019, Revised Selected Papers / _cedited by Valerio Bitetta, Ilaria Bordino, Andrea Ferretti, Francesco Gullo, Stefano Pascolutti, Giovanni Ponti. |
250 | _a1st ed. 2020. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2020. |
|
300 |
_aIX, 133 p. 37 illus., 27 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v11985 |
|
505 | 0 | _aMQLV: Optimal Policy of Money Management in Retail Banking with Q-Learning -- Curriculum Learning in Deep Neural Networks for Financial Forecasting -- Representation Learning in Graphs for Credit Card Fraud Detection -- Firms Default Prediction with Machine Learning -- Convolutional Neural Networks, Image Recognition and Financial Time Series Forecasting -- Mining Business Relationships from Stocks and News -- Mining Financial Risk Events from News and Assessing their impact on Stocks -- Monitoring the Business Cycle with Fine-grained, Aspect-based Sentiment Extraction from News -- Multi-step Prediction of Financial Asset Return Volatility Using Parsimonious Autoregressive Sequential Model -- Big Data Financial Sentiment Analysis in the European Bond Markets -- A Brand Scoring System for Cryptocurrencies Based on Social Media Data. | |
520 | _aThis book constitutes revised selected papers from the 4th Workshop on Mining Data for Financial Applications, MIDAS 2019, held in conjunction with ECML PKDD 2019, in Würzburg, Germany, in September 2019. The 8 full and 3 short papers presented in this volume were carefully reviewed and selected from 16 submissions. They deal with challenges, potentialities, and applications of leveraging data-mining tasks regarding problems in the financial domain. | ||
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aComputer vision. _996877 |
|
650 | 0 |
_aComputer engineering. _910164 |
|
650 | 0 |
_aComputer networks . _931572 |
|
650 | 0 |
_aElectronic commerce. _95589 |
|
650 | 0 |
_aSocial sciences _xData processing. _983360 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aComputer Vision. _996879 |
650 | 2 | 4 |
_aComputer Engineering and Networks. _996881 |
650 | 2 | 4 |
_aComputer Communication Networks. _996883 |
650 | 2 | 4 |
_ae-Commerce and e-Business. _931772 |
650 | 2 | 4 |
_aComputer Application in Social and Behavioral Sciences. _931815 |
700 | 1 |
_aBitetta, Valerio. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _996886 |
|
700 | 1 |
_aBordino, Ilaria. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _996888 |
|
700 | 1 |
_aFerretti, Andrea. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _996889 |
|
700 | 1 |
_aGullo, Francesco. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _996891 |
|
700 | 1 |
_aPascolutti, Stefano. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _996893 |
|
700 | 1 |
_aPonti, Giovanni. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _996894 |
|
710 | 2 |
_aSpringerLink (Online service) _996895 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783030377199 |
776 | 0 | 8 |
_iPrinted edition: _z9783030377212 |
830 | 0 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v11985 _996897 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-030-37720-5 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c87374 _d87374 |